Files
GenAIExamples/ChatQnA/tests/test_chatqna_on_gaudi.sh
lvliang-intel a6b3caf128 Refactor example code (#183)
Signed-off-by: lvliang-intel <liang1.lv@intel.com>
Signed-off-by: Yue, Wenjiao <wenjiao.yue@intel.com>
Signed-off-by: chensuyue <suyue.chen@intel.com>
2024-05-24 13:32:14 +08:00

211 lines
7.3 KiB
Bash

#!/bin/bash
# Copyright (C) 2024 Intel Corporation
# SPDX-License-Identifier: Apache-2.0
set -x
WORKPATH=$(dirname "$PWD")
LOG_PATH="$WORKPATH/tests"
ip_address=$(hostname -I | awk '{print $1}')
function build_docker_images() {
cd $WORKPATH
git clone https://github.com/opea-project/GenAIComps.git
cd GenAIComps
docker build -t opea/gen-ai-comps:embedding-tei-server -f comps/embeddings/langchain/docker/Dockerfile .
docker build -t opea/gen-ai-comps:retriever-redis-server -f comps/retrievers/langchain/docker/Dockerfile .
docker build -t opea/gen-ai-comps:reranking-tei-server -f comps/reranks/langchain/docker/Dockerfile .
docker build -t opea/gen-ai-comps:llm-tgi-gaudi-server -f comps/llms/text-generation/tgi/Dockerfile .
docker build -t opea/gen-ai-comps:dataprep-redis-server -f comps/dataprep/redis/docker/Dockerfile .
cd ..
git clone https://github.com/huggingface/tei-gaudi
cd tei-gaudi/
docker build --no-cache -f Dockerfile-hpu -t opea/tei-gaudi .
docker pull ghcr.io/huggingface/tgi-gaudi:1.2.1
docker pull ghcr.io/huggingface/text-embeddings-inference:cpu-1.2
cd $WORKPATH
docker build --no-cache -t opea/gen-ai-comps:chatqna-megaservice-server -f Dockerfile .
cd $WORKPATH/ui
docker build --no-cache -t opea/gen-ai-comps:chatqna-ui-server -f docker/Dockerfile .
docker images
}
function start_services() {
cd $WORKPATH/docker-composer/gaudi
export EMBEDDING_MODEL_ID="BAAI/bge-base-en-v1.5"
export RERANK_MODEL_ID="BAAI/bge-reranker-large"
export LLM_MODEL_ID="Intel/neural-chat-7b-v3-3"
export TEI_EMBEDDING_ENDPOINT="http://${ip_address}:8090"
export TEI_RERANKING_ENDPOINT="http://${ip_address}:8808"
export TGI_LLM_ENDPOINT="http://${ip_address}:8008"
export REDIS_URL="redis://${ip_address}:6379"
export INDEX_NAME="rag-redis"
export HUGGINGFACEHUB_API_TOKEN=${HUGGINGFACEHUB_API_TOKEN}
export MEGA_SERVICE_HOST_IP=${ip_address}
export EMBEDDING_SERVICE_HOST_IP=${ip_address}
export RETRIEVER_SERVICE_HOST_IP=${ip_address}
export RERANK_SERVICE_HOST_IP=${ip_address}
export LLM_SERVICE_HOST_IP=${ip_address}
export BACKEND_SERVICE_ENDPOINT="http://${ip_address}:8888/v1/chatqna"
# Start Docker Containers
# TODO: Replace the container name with a test-specific name
docker compose -f docker_compose.yaml up -d
sleep 1m # Waits 1 minutes
}
function validate_microservices() {
# Check if the microservices are running correctly.
# TODO: Any results check required??
curl ${ip_address}:8090/embed \
-X POST \
-d '{"inputs":"What is Deep Learning?"}' \
-H 'Content-Type: application/json' > ${LOG_PATH}/embed.log
exit_code=$?
if [ $exit_code -ne 0 ]; then
echo "Microservice failed, please check the logs in artifacts!"
docker logs tei-embedding-gaudi-server >> ${LOG_PATH}/embed.log
exit 1
fi
sleep 5s
curl http://${ip_address}:6000/v1/embeddings \
-X POST \
-d '{"text":"hello"}' \
-H 'Content-Type: application/json' > ${LOG_PATH}/embeddings.log
exit_code=$?
if [ $exit_code -ne 0 ]; then
echo "Microservice failed, please check the logs in artifacts!"
docker logs embedding-tei-server >> ${LOG_PATH}/embeddings.log
exit 1
fi
sleep 5s
export PATH="${HOME}/miniconda3/bin:$PATH"
source activate
test_embedding=$(python -c "import random; embedding = [random.uniform(-1, 1) for _ in range(768)]; print(embedding)")
curl http://${ip_address}:7000/v1/retrieval \
-X POST \
-d '{"text":"test","embedding":${your_embedding}}' \
-H 'Content-Type: application/json' > ${LOG_PATH}/retrieval.log
exit_code=$?
if [ $exit_code -ne 0 ]; then
echo "Microservice failed, please check the logs in artifacts!"
docker logs retriever-redis-server >> ${LOG_PATH}/retrieval.log
exit 1
fi
sleep 5s
curl http://${ip_address}:8808/rerank \
-X POST \
-d '{"query":"What is Deep Learning?", "texts": ["Deep Learning is not...", "Deep learning is..."]}' \
-H 'Content-Type: application/json' > ${LOG_PATH}/rerank.log
exit_code=$?
if [ $exit_code -ne 0 ]; then
echo "Microservice failed, please check the logs in artifacts!"
docker logs tei-xeon-server >> ${LOG_PATH}/rerank.log
exit 1
fi
sleep 5s
curl http://${ip_address}:8000/v1/reranking \
-X POST \
-d '{"initial_query":"What is Deep Learning?", "retrieved_docs": [{"text":"Deep Learning is not..."}, {"text":"Deep learning is..."}]}' \
-H 'Content-Type: application/json' > ${LOG_PATH}/reranking.log
exit_code=$?
if [ $exit_code -ne 0 ]; then
echo "Microservice failed, please check the logs in artifacts!"
docker logs reranking-tei-gaudi-server >> ${LOG_PATH}/reranking.log
exit 1
fi
sleep 1m
curl http://${ip_address}:8008/generate \
-X POST \
-d '{"inputs":"What is Deep Learning?","parameters":{"max_new_tokens":64, "do_sample": true}}' \
-H 'Content-Type: application/json' > ${LOG_PATH}/generate.log
exit_code=$?
if [ $exit_code -ne 0 ]; then
echo "Microservice failed, please check the logs in artifacts!"
docker logs tgi-gaudi-server >> ${LOG_PATH}/generate.log
exit 1
fi
sleep 5s
curl http://${ip_address}:9000/v1/chat/completions \
-X POST \
-d '{"text":"What is Deep Learning?"}' \
-H 'Content-Type: application/json' > ${LOG_PATH}/completions.log
exit_code=$?
if [ $exit_code -ne 0 ]; then
echo "Microservice failed, please check the logs in artifacts!"
docker logs llm-tgi-gaudi-server >> ${LOG_PATH}/completions.log
exit 1
fi
sleep 5s
}
function validate_megaservice() {
# Curl the Mega Service
curl http://${ip_address}:8888/v1/chatqna -H "Content-Type: application/json" -d '{
"model": "Intel/neural-chat-7b-v3-3",
"messages": "What is the revenue of Nike in 2023?"}' > ${LOG_PATH}/curl_megaservice.log
exit_code=$?
if [ $exit_code -ne 0 ]; then
echo "Megaservice failed, please check the logs in artifacts!"
docker logs chatqna-gaudi-backend-server >> ${LOG_PATH}/curl_megaservice.log
exit 1
fi
echo "Checking response results, make sure the output is reasonable. "
local status=false
if [[ -f $LOG_PATH/curl_megaservice.log ]] && \
[[ $(grep -c "billion" $LOG_PATH/curl_megaservice.log) != 0 ]]; then
status=true
fi
if [ $status == false ]; then
echo "Response check failed, please check the logs in artifacts!"
exit 1
else
echo "Response check succeed!"
fi
echo "Checking response format, make sure the output format is acceptable for UI."
# TODO
}
function stop_docker() {
cd $WORKPATH/docker-composer/gaudi
container_list=$(cat docker_compose.yaml | grep container_name | cut -d':' -f2)
for container_name in $container_list; do
cid=$(docker ps -aq --filter "name=$container_name")
if [[ ! -z "$cid" ]]; then docker stop $cid && docker rm $cid && sleep 1s; fi
done
}
function main() {
stop_docker
build_docker_images
start_services
validate_microservices
validate_megaservice
stop_docker
echo y | docker system prune
}
main