Files
GenAIExamples/EdgeCraftRAG/chatqna.py
2025-01-06 13:25:55 +08:00

93 lines
3.6 KiB
Python

# Copyright (C) 2024 Intel Corporation
# SPDX-License-Identifier: Apache-2.0
import os
from comps import MicroService, ServiceOrchestrator, ServiceType
MEGA_SERVICE_PORT = int(os.getenv("MEGA_SERVICE_PORT", 16011))
PIPELINE_SERVICE_HOST_IP = os.getenv("PIPELINE_SERVICE_HOST_IP", "127.0.0.1")
PIPELINE_SERVICE_PORT = int(os.getenv("PIPELINE_SERVICE_PORT", 16010))
from comps import MegaServiceEndpoint, ServiceRoleType
from comps.cores.proto.api_protocol import (
ChatCompletionRequest,
ChatCompletionResponse,
ChatCompletionResponseChoice,
ChatMessage,
UsageInfo,
)
from comps.cores.proto.docarray import LLMParams
from fastapi import Request
from fastapi.responses import StreamingResponse
class EdgeCraftRagService:
def __init__(self, host="0.0.0.0", port=16010):
self.host = host
self.port = port
self.megaservice = ServiceOrchestrator()
self.endpoint = str(MegaServiceEndpoint.CHAT_QNA)
def add_remote_service(self):
edgecraftrag = MicroService(
name="pipeline",
host=PIPELINE_SERVICE_HOST_IP,
port=PIPELINE_SERVICE_PORT,
endpoint="/v1/chatqna",
use_remote_service=True,
service_type=ServiceType.LLM,
)
self.megaservice.add(edgecraftrag)
async def handle_request(self, request: Request):
input = await request.json()
stream_opt = input.get("stream", False)
chat_request = ChatCompletionRequest.parse_obj(input)
parameters = LLMParams(
max_tokens=chat_request.max_tokens if chat_request.max_tokens else 1024,
top_k=chat_request.top_k if chat_request.top_k else 10,
top_p=chat_request.top_p if chat_request.top_p else 0.95,
temperature=chat_request.temperature if chat_request.temperature else 0.01,
frequency_penalty=chat_request.frequency_penalty if chat_request.frequency_penalty else 0.0,
presence_penalty=chat_request.presence_penalty if chat_request.presence_penalty else 0.0,
repetition_penalty=chat_request.repetition_penalty if chat_request.repetition_penalty else 1.03,
stream=stream_opt,
chat_template=chat_request.chat_template if chat_request.chat_template else None,
)
result_dict, runtime_graph = await self.megaservice.schedule(initial_inputs=input, llm_parameters=parameters)
for node, response in result_dict.items():
if isinstance(response, StreamingResponse):
return response
last_node = runtime_graph.all_leaves()[-1]
response = result_dict[last_node]
choices = []
usage = UsageInfo()
choices.append(
ChatCompletionResponseChoice(
index=0,
message=ChatMessage(role="assistant", content=response),
finish_reason="stop",
)
)
return ChatCompletionResponse(model="edgecraftrag", choices=choices, usage=usage)
def start(self):
self.service = MicroService(
self.__class__.__name__,
service_role=ServiceRoleType.MEGASERVICE,
host=self.host,
port=self.port,
endpoint=self.endpoint,
input_datatype=ChatCompletionRequest,
output_datatype=ChatCompletionResponse,
)
self.service.add_route(self.endpoint, self.handle_request, methods=["POST"])
self.service.start()
if __name__ == "__main__":
edgecraftrag = EdgeCraftRagService(port=MEGA_SERVICE_PORT)
edgecraftrag.add_remote_service()
edgecraftrag.start()