Files
GenAIExamples/DocIndexRetriever/retrieval_tool.py
minmin-intel 411bb28f41 fix bugs in DocIndexRetriever (#1770)
Signed-off-by: minmin-intel <minmin.hou@intel.com>
2025-04-10 09:45:46 +08:00

223 lines
8.7 KiB
Python

# Copyright (C) 2024 Intel Corporation
# SPDX-License-Identifier: Apache-2.0
import argparse
import asyncio
import os
from typing import Union
from comps import MegaServiceEndpoint, MicroService, ServiceOrchestrator, ServiceRoleType, ServiceType
from comps.cores.proto.api_protocol import ChatCompletionRequest, EmbeddingRequest
from comps.cores.proto.docarray import LLMParams, LLMParamsDoc, RerankedDoc, RerankerParms, RetrieverParms, TextDoc
from fastapi import Request
MEGA_SERVICE_PORT = os.getenv("MEGA_SERVICE_PORT", 8889)
EMBEDDING_SERVICE_HOST_IP = os.getenv("EMBEDDING_SERVICE_HOST_IP", "0.0.0.0")
EMBEDDING_SERVICE_PORT = os.getenv("EMBEDDING_SERVICE_PORT", 6000)
RETRIEVER_SERVICE_HOST_IP = os.getenv("RETRIEVER_SERVICE_HOST_IP", "0.0.0.0")
RETRIEVER_SERVICE_PORT = os.getenv("RETRIEVER_SERVICE_PORT", 7000)
RERANK_SERVICE_HOST_IP = os.getenv("RERANK_SERVICE_HOST_IP", "0.0.0.0")
RERANK_SERVICE_PORT = os.getenv("RERANK_SERVICE_PORT", 8000)
def align_inputs(self, inputs, cur_node, runtime_graph, llm_parameters_dict, **kwargs):
print(f"*** Inputs to {cur_node}:\n{inputs}")
print("--" * 50)
for key, value in kwargs.items():
print(f"{key}: {value}")
if self.services[cur_node].service_type == ServiceType.EMBEDDING:
inputs["input"] = inputs["text"]
del inputs["text"]
elif self.services[cur_node].service_type == ServiceType.RETRIEVER:
# input is EmbedDoc
"""Class EmbedDoc(BaseDoc):
text: Union[str, List[str]]
embedding: Union[conlist(float, min_length=0), List[conlist(float, min_length=0)]]
search_type: str = "similarity"
k: int = 4
distance_threshold: Optional[float] = None
fetch_k: int = 20
lambda_mult: float = 0.5
score_threshold: float = 0.2
constraints: Optional[Union[Dict[str, Any], List[Dict[str, Any]], None]] = None
index_name: Optional[str] = None
"""
# prepare the retriever params
retriever_parameters = kwargs.get("retriever_parameters", None)
if retriever_parameters:
inputs.update(retriever_parameters.dict())
elif self.services[cur_node].service_type == ServiceType.RERANK:
# input is SearchedDoc
"""Class SearchedDoc(BaseDoc):
retrieved_docs: DocList[TextDoc]
initial_query: str
top_n: int = 1
"""
# prepare the reranker params
reranker_parameters = kwargs.get("reranker_parameters", None)
if reranker_parameters:
inputs.update(reranker_parameters.dict())
print(f"*** Formatted Inputs to {cur_node}:\n{inputs}")
print("--" * 50)
return inputs
def align_outputs(self, data, cur_node, inputs, runtime_graph, llm_parameters_dict, **kwargs):
print(f"*** Direct Outputs from {cur_node}:\n{data}")
print("--" * 50)
if self.services[cur_node].service_type == ServiceType.EMBEDDING:
# direct output from Embedding microservice is EmbeddingResponse
"""
class EmbeddingResponse(BaseModel):
object: str = "list"
model: Optional[str] = None
data: List[EmbeddingResponseData]
usage: Optional[UsageInfo] = None
class EmbeddingResponseData(BaseModel):
index: int
object: str = "embedding"
embedding: Union[List[float], str]
"""
# turn it into EmbedDoc
assert isinstance(data["data"], list)
next_data = {"text": inputs["input"], "embedding": data["data"][0]["embedding"]} # EmbedDoc
else:
next_data = data
print(f"*** Formatted Output from {cur_node} for next node:\n", next_data)
print("--" * 50)
return next_data
class RetrievalToolService:
def __init__(self, host="0.0.0.0", port=8000):
self.host = host
self.port = port
ServiceOrchestrator.align_inputs = align_inputs
ServiceOrchestrator.align_outputs = align_outputs
self.megaservice = ServiceOrchestrator()
self.endpoint = str(MegaServiceEndpoint.RETRIEVALTOOL)
def add_remote_service(self):
embedding = MicroService(
name="embedding",
host=EMBEDDING_SERVICE_HOST_IP,
port=EMBEDDING_SERVICE_PORT,
endpoint="/v1/embeddings",
use_remote_service=True,
service_type=ServiceType.EMBEDDING,
)
retriever = MicroService(
name="retriever",
host=RETRIEVER_SERVICE_HOST_IP,
port=RETRIEVER_SERVICE_PORT,
endpoint="/v1/retrieval",
use_remote_service=True,
service_type=ServiceType.RETRIEVER,
)
rerank = MicroService(
name="rerank",
host=RERANK_SERVICE_HOST_IP,
port=RERANK_SERVICE_PORT,
endpoint="/v1/reranking",
use_remote_service=True,
service_type=ServiceType.RERANK,
)
self.megaservice.add(embedding).add(retriever).add(rerank)
self.megaservice.flow_to(embedding, retriever)
self.megaservice.flow_to(retriever, rerank)
async def handle_request(self, request: Request):
data = await request.json()
chat_request = ChatCompletionRequest.parse_obj(data)
prompt = chat_request.messages
# dummy llm params
parameters = LLMParams(
max_tokens=chat_request.max_tokens if chat_request.max_tokens else 1024,
top_k=chat_request.top_k if chat_request.top_k else 10,
top_p=chat_request.top_p if chat_request.top_p else 0.95,
temperature=chat_request.temperature if chat_request.temperature else 0.01,
frequency_penalty=chat_request.frequency_penalty if chat_request.frequency_penalty else 0.0,
presence_penalty=chat_request.presence_penalty if chat_request.presence_penalty else 0.0,
repetition_penalty=chat_request.repetition_penalty if chat_request.repetition_penalty else 1.03,
chat_template=chat_request.chat_template if chat_request.chat_template else None,
model=chat_request.model if chat_request.model else None,
)
retriever_parameters = RetrieverParms(
search_type=chat_request.search_type if chat_request.search_type else "similarity",
k=chat_request.k if chat_request.k else 4,
distance_threshold=chat_request.distance_threshold if chat_request.distance_threshold else None,
fetch_k=chat_request.fetch_k if chat_request.fetch_k else 20,
lambda_mult=chat_request.lambda_mult if chat_request.lambda_mult else 0.5,
score_threshold=chat_request.score_threshold if chat_request.score_threshold else 0.2,
)
reranker_parameters = RerankerParms(
top_n=chat_request.top_n if chat_request.top_n else 1,
)
result_dict, runtime_graph = await self.megaservice.schedule(
initial_inputs={"text": prompt},
llm_parameters=parameters,
retriever_parameters=retriever_parameters,
reranker_parameters=reranker_parameters,
)
last_node = runtime_graph.all_leaves()[-1]
response = result_dict[last_node]
return response
def start(self):
self.service = MicroService(
self.__class__.__name__,
service_role=ServiceRoleType.MEGASERVICE,
host=self.host,
port=self.port,
endpoint=self.endpoint,
input_datatype=Union[TextDoc, EmbeddingRequest, ChatCompletionRequest],
output_datatype=Union[RerankedDoc, LLMParamsDoc],
)
self.service.add_route(self.endpoint, self.handle_request, methods=["POST"])
self.service.start()
def add_remote_service_without_rerank(self):
embedding = MicroService(
name="embedding",
host=EMBEDDING_SERVICE_HOST_IP,
port=EMBEDDING_SERVICE_PORT,
endpoint="/v1/embeddings",
use_remote_service=True,
service_type=ServiceType.EMBEDDING,
)
retriever = MicroService(
name="retriever",
host=RETRIEVER_SERVICE_HOST_IP,
port=RETRIEVER_SERVICE_PORT,
endpoint="/v1/retrieval",
use_remote_service=True,
service_type=ServiceType.RETRIEVER,
)
self.megaservice.add(embedding).add(retriever)
self.megaservice.flow_to(embedding, retriever)
if __name__ == "__main__":
parser = argparse.ArgumentParser()
parser.add_argument("--without-rerank", action="store_true")
args = parser.parse_args()
chatqna = RetrievalToolService(port=MEGA_SERVICE_PORT)
if args.without_rerank:
chatqna.add_remote_service_without_rerank()
else:
chatqna.add_remote_service()
chatqna.start()