Files
GenAIExamples/ChatQnA/tests/test_compose_qdrant_on_xeon.sh
XinyaoWa d73129cbf0 Refactor folder to support different vendors (#743)
Signed-off-by: Xinyao Wang <xinyao.wang@intel.com>
Signed-off-by: chensuyue <suyue.chen@intel.com>
2024-09-10 23:27:19 +08:00

241 lines
8.1 KiB
Bash

#!/bin/bash
# Copyright (C) 2024 Intel Corporation
# SPDX-License-Identifier: Apache-2.0
set -e
IMAGE_REPO=${IMAGE_REPO:-"opea"}
IMAGE_TAG=${IMAGE_TAG:-"latest"}
echo "REGISTRY=IMAGE_REPO=${IMAGE_REPO}"
echo "TAG=IMAGE_TAG=${IMAGE_TAG}"
export REGISTRY=${IMAGE_REPO}
export TAG=${IMAGE_TAG}
WORKPATH=$(dirname "$PWD")
LOG_PATH="$WORKPATH/tests"
ip_address=$(hostname -I | awk '{print $1}')
function build_docker_images() {
cd $WORKPATH/docker_image_build
git clone https://github.com/opea-project/GenAIComps.git && cd GenAIComps && git checkout "${opea_branch:-"main"}" && cd ../
echo "Build all the images with --no-cache, check docker_image_build.log for details..."
service_list="chatqna chatqna-ui dataprep-qdrant embedding-tei retriever-qdrant reranking-tei llm-tgi"
docker compose -f build.yaml build ${service_list} --no-cache > ${LOG_PATH}/docker_image_build.log
docker images && sleep 1s
}
function start_services() {
cd $WORKPATH/docker_compose/intel/cpu/xeon
export EMBEDDING_MODEL_ID="BAAI/bge-base-en-v1.5"
export RERANK_MODEL_ID="BAAI/bge-reranker-base"
export LLM_MODEL_ID="Intel/neural-chat-7b-v3-3"
export TEI_EMBEDDING_ENDPOINT="http://${ip_address}:6040"
export TEI_RERANKING_ENDPOINT="http://${ip_address}:6041"
export TGI_LLM_ENDPOINT="http://${ip_address}:6042"
export QDRANT_HOST=${ip_address}
export QDRANT_PORT=6333
export INDEX_NAME="rag-qdrant"
export HUGGINGFACEHUB_API_TOKEN=${HUGGINGFACEHUB_API_TOKEN}
export MEGA_SERVICE_HOST_IP=${ip_address}
export EMBEDDING_SERVICE_HOST_IP=${ip_address}
export RETRIEVER_SERVICE_HOST_IP=${ip_address}
export RERANK_SERVICE_HOST_IP=${ip_address}
export LLM_SERVICE_HOST_IP=${ip_address}
export EMBEDDING_SERVICE_PORT=6044
export RETRIEVER_SERVICE_PORT=6045
export RERANK_SERVICE_PORT=6046
export LLM_SERVICE_PORT=6047
export BACKEND_SERVICE_ENDPOINT="http://${ip_address}:8912/v1/chatqna"
export DATAPREP_SERVICE_ENDPOINT="http://${ip_address}:6043/v1/dataprep"
sed -i "s/backend_address/$ip_address/g" $WORKPATH/ui/svelte/.env
# Start Docker Containers
docker compose -f compose_qdrant.yaml up -d > ${LOG_PATH}/start_services_with_compose.log
n=0
until [[ "$n" -ge 100 ]]; do
docker logs tgi-service > tgi_service_start.log
if grep -q Connected tgi_service_start.log; then
break
fi
sleep 5s
n=$((n+1))
done
}
function validate_services() {
local URL="$1"
local EXPECTED_RESULT="$2"
local SERVICE_NAME="$3"
local DOCKER_NAME="$4"
local INPUT_DATA="$5"
if [[ $SERVICE_NAME == *"dataprep_upload_file"* ]]; then
cd $LOG_PATH
HTTP_RESPONSE=$(curl --silent --write-out "HTTPSTATUS:%{http_code}" -X POST -F 'files=@./dataprep_file.txt' -H 'Content-Type: multipart/form-data' "$URL")
elif [[ $SERVICE_NAME == *"dataprep_upload_link"* ]]; then
HTTP_RESPONSE=$(curl --silent --write-out "HTTPSTATUS:%{http_code}" -X POST -F 'link_list=["https://www.ces.tech/"]' "$URL")
else
HTTP_RESPONSE=$(curl --silent --write-out "HTTPSTATUS:%{http_code}" -X POST -d "$INPUT_DATA" -H 'Content-Type: application/json' "$URL")
fi
HTTP_STATUS=$(echo $HTTP_RESPONSE | tr -d '\n' | sed -e 's/.*HTTPSTATUS://')
RESPONSE_BODY=$(echo $HTTP_RESPONSE | sed -e 's/HTTPSTATUS\:.*//g')
docker logs ${DOCKER_NAME} >> ${LOG_PATH}/${SERVICE_NAME}.log
# check response status
if [ "$HTTP_STATUS" -ne "200" ]; then
echo "[ $SERVICE_NAME ] HTTP status is not 200. Received status was $HTTP_STATUS"
exit 1
else
echo "[ $SERVICE_NAME ] HTTP status is 200. Checking content..."
fi
# check response body
if [[ "$RESPONSE_BODY" != *"$EXPECTED_RESULT"* ]]; then
echo "[ $SERVICE_NAME ] Content does not match the expected result: $RESPONSE_BODY"
exit 1
else
echo "[ $SERVICE_NAME ] Content is as expected."
fi
sleep 1s
}
function validate_microservices() {
# Check if the microservices are running correctly.
# tei for embedding service
validate_services \
"${ip_address}:6040/embed" \
"[[" \
"tei-embedding" \
"tei-embedding-server" \
'{"inputs":"What is Deep Learning?"}'
# embedding microservice
validate_services \
"${ip_address}:6044/v1/embeddings" \
'"text":"What is Deep Learning?","embedding":[' \
"embedding" \
"embedding-tei-server" \
'{"text":"What is Deep Learning?"}'
# test /v1/dataprep upload file
echo "Deep learning is a subset of machine learning that utilizes neural networks with multiple layers to analyze various levels of abstract data representations. It enables computers to identify patterns and make decisions with minimal human intervention by learning from large amounts of data." > $LOG_PATH/dataprep_file.txt
validate_services \
"${ip_address}:6043/v1/dataprep" \
"Data preparation succeeded" \
"dataprep_upload_file" \
"dataprep-qdrant-server"
# test upload link
validate_services \
"${ip_address}:6043/v1/dataprep" \
"Data preparation succeeded" \
"dataprep_upload_link" \
"dataprep-qdrant-server"
# retrieval microservice
test_embedding=$(python3 -c "import random; embedding = [random.uniform(-1, 1) for _ in range(768)]; print(embedding)")
validate_services \
"${ip_address}:6045/v1/retrieval" \
"retrieved_docs" \
"retrieval" \
"retriever-qdrant-server" \
"{\"text\":\"What is Deep Learning?\",\"embedding\":${test_embedding}}"
# tei for rerank microservice
validate_services \
"${ip_address}:6041/rerank" \
'{"index":1,"score":' \
"tei-rerank" \
"tei-reranking-server" \
'{"query":"What is Deep Learning?", "texts": ["Deep Learning is not...", "Deep learning is..."]}'
# rerank microservice
validate_services \
"${ip_address}:6046/v1/reranking" \
"Deep learning is..." \
"rerank" \
"reranking-tei-xeon-server" \
'{"initial_query":"What is Deep Learning?", "retrieved_docs": [{"text":"Deep Learning is not..."}, {"text":"Deep learning is..."}]}'
# tgi for llm service
validate_services \
"${ip_address}:6042/generate" \
"generated_text" \
"tgi-llm" \
"tgi-service" \
'{"inputs":"What is Deep Learning?","parameters":{"max_new_tokens":17, "do_sample": true}}'
# llm microservice
validate_services \
"${ip_address}:6047/v1/chat/completions" \
"data: " \
"llm" \
"llm-tgi-server" \
'{"query":"Deep Learning"}'
}
function validate_megaservice() {
# Curl the Mega Service
validate_services \
"${ip_address}:8912/v1/chatqna" \
"data: " \
"mega-chatqna" \
"chatqna-xeon-backend-server" \
'{"messages": "What is the revenue of Nike in 2023?"}'
}
function validate_frontend() {
cd $WORKPATH/ui/svelte
local conda_env_name="OPEA_e2e"
export PATH=${HOME}/miniforge3/bin/:$PATH
source activate ${conda_env_name}
sed -i "s/localhost/$ip_address/g" playwright.config.ts
npm install && npm ci && npx playwright install --with-deps
node -v && npm -v && pip list
exit_status=0
npx playwright test || exit_status=$?
if [ $exit_status -ne 0 ]; then
echo "[TEST INFO]: ---------frontend test failed---------"
exit $exit_status
else
echo "[TEST INFO]: ---------frontend test passed---------"
fi
}
function stop_docker() {
cd $WORKPATH/docker_compose/intel/cpu/xeon
docker compose -f compose_qdrant.yaml stop && docker compose -f compose_qdrant.yaml rm -f
}
function main() {
stop_docker
if [[ "$IMAGE_REPO" == "opea" ]]; then build_docker_images; fi
start_time=$(date +%s)
start_services
end_time=$(date +%s)
duration=$((end_time-start_time))
echo "Mega service start duration is $duration s" && sleep 1s
validate_microservices
validate_megaservice
validate_frontend
stop_docker
echo y | docker system prune
}
main