Files
GenAIExamples/ChatQnA/tests/test_compose_guardrails_on_gaudi.sh
lvliang-intel 3fb60608b3 Use official tei gaudi image and update tgi gaudi version (#810)
Signed-off-by: lvliang-intel <liang1.lv@intel.com>
Co-authored-by: pre-commit-ci[bot] <66853113+pre-commit-ci[bot]@users.noreply.github.com>
2024-09-23 17:52:56 +08:00

256 lines
8.3 KiB
Bash

#!/bin/bash
# Copyright (C) 2024 Intel Corporation
# SPDX-License-Identifier: Apache-2.0
set -e
IMAGE_REPO=${IMAGE_REPO:-"opea"}
IMAGE_TAG=${IMAGE_TAG:-"latest"}
echo "REGISTRY=IMAGE_REPO=${IMAGE_REPO}"
echo "TAG=IMAGE_TAG=${IMAGE_TAG}"
export REGISTRY=${IMAGE_REPO}
export TAG=${IMAGE_TAG}
WORKPATH=$(dirname "$PWD")
LOG_PATH="$WORKPATH/tests"
ip_address=$(hostname -I | awk '{print $1}')
function build_docker_images() {
cd $WORKPATH/docker_image_build
git clone https://github.com/opea-project/GenAIComps.git && cd GenAIComps && git checkout "${opea_branch:-"main"}" && cd ../
echo "Build all the images with --no-cache, check docker_image_build.log for details..."
service_list="chatqna-guardrails chatqna-ui dataprep-redis embedding-tei retriever-redis reranking-tei llm-tgi guardrails-tgi"
docker compose -f build.yaml build ${service_list} --no-cache > ${LOG_PATH}/docker_image_build.log
docker pull ghcr.io/huggingface/tgi-gaudi:2.0.5
docker pull ghcr.io/huggingface/text-embeddings-inference:cpu-1.5
docker pull ghcr.io/huggingface/tei-gaudi:latest
docker images && sleep 1s
}
function start_services() {
cd $WORKPATH/docker_compose/intel/hpu/gaudi
export EMBEDDING_MODEL_ID="BAAI/bge-base-en-v1.5"
export RERANK_MODEL_ID="BAAI/bge-reranker-base"
export LLM_MODEL_ID="Intel/neural-chat-7b-v3-3"
export TEI_EMBEDDING_ENDPOINT="http://${ip_address}:8090"
export TEI_RERANKING_ENDPOINT="http://${ip_address}:8808"
export TGI_LLM_ENDPOINT="http://${ip_address}:8008"
export REDIS_URL="redis://${ip_address}:6379"
export INDEX_NAME="rag-redis"
export HUGGINGFACEHUB_API_TOKEN=${HUGGINGFACEHUB_API_TOKEN}
export MEGA_SERVICE_HOST_IP=${ip_address}
export EMBEDDING_SERVICE_HOST_IP=${ip_address}
export RETRIEVER_SERVICE_HOST_IP=${ip_address}
export RERANK_SERVICE_HOST_IP=${ip_address}
export LLM_SERVICE_HOST_IP=${ip_address}
export GUARDRAIL_SERVICE_HOST_IP=${ip_address}
export BACKEND_SERVICE_ENDPOINT="http://${ip_address}:8888/v1/chatqna"
export DATAPREP_SERVICE_ENDPOINT="http://${ip_address}:6007/v1/dataprep"
export GURADRAILS_MODEL_ID="meta-llama/Meta-Llama-Guard-2-8B"
export SAFETY_GUARD_MODEL_ID="meta-llama/Meta-Llama-Guard-2-8B"
export SAFETY_GUARD_ENDPOINT="http://${ip_address}:8088"
sed -i "s/backend_address/$ip_address/g" $WORKPATH/ui/svelte/.env
# Start Docker Containers
docker compose -f compose_guardrails.yaml up -d > ${LOG_PATH}/start_services_with_compose.log
n=0
until [[ "$n" -ge 100 ]]; do
docker logs tgi-gaudi-server > tgi_service_start.log
if grep -q Connected tgi_service_start.log; then
break
fi
sleep 5s
n=$((n+1))
done
# Make sure tgi guardrails service is ready
n=0
until [[ "$n" -ge 100 ]]; do
docker logs tgi-guardrails-server > tgi_guardrails_service_start.log
if grep -q Connected tgi_guardrails_service_start.log; then
break
fi
sleep 5s
n=$((n+1))
done
}
function validate_services() {
local URL="$1"
local EXPECTED_RESULT="$2"
local SERVICE_NAME="$3"
local DOCKER_NAME="$4"
local INPUT_DATA="$5"
HTTP_RESPONSE=$(curl --silent --write-out "HTTPSTATUS:%{http_code}" -X POST -d "$INPUT_DATA" -H 'Content-Type: application/json' "$URL")
HTTP_STATUS=$(echo $HTTP_RESPONSE | tr -d '\n' | sed -e 's/.*HTTPSTATUS://')
RESPONSE_BODY=$(echo $HTTP_RESPONSE | sed -e 's/HTTPSTATUS\:.*//g')
docker logs ${DOCKER_NAME} >> ${LOG_PATH}/${SERVICE_NAME}.log
# check response status
if [ "$HTTP_STATUS" -ne "200" ]; then
echo "[ $SERVICE_NAME ] HTTP status is not 200. Received status was $HTTP_STATUS"
exit 1
else
echo "[ $SERVICE_NAME ] HTTP status is 200. Checking content..."
fi
# check response body
if [[ "$RESPONSE_BODY" != *"$EXPECTED_RESULT"* ]]; then
echo "[ $SERVICE_NAME ] Content does not match the expected result: $RESPONSE_BODY"
exit 1
else
echo "[ $SERVICE_NAME ] Content is as expected."
fi
sleep 1s
}
function validate_microservices() {
# Check if the microservices are running correctly.
# tei for embedding service
validate_services \
"${ip_address}:8090/embed" \
"[[" \
"tei-embedding" \
"tei-embedding-gaudi-server" \
'{"inputs":"What is Deep Learning?"}'
# embedding microservice
validate_services \
"${ip_address}:6000/v1/embeddings" \
'"text":"What is Deep Learning?","embedding":[' \
"embedding" \
"embedding-tei-server" \
'{"text":"What is Deep Learning?"}'
sleep 1m # retrieval can't curl as expected, try to wait for more time
# retrieval microservice
test_embedding=$(python3 -c "import random; embedding = [random.uniform(-1, 1) for _ in range(768)]; print(embedding)")
validate_services \
"${ip_address}:7000/v1/retrieval" \
"retrieved_docs" \
"retrieval" \
"retriever-redis-server" \
"{\"text\":\"What is the revenue of Nike in 2023?\",\"embedding\":${test_embedding}}"
# tei for rerank microservice
validate_services \
"${ip_address}:8808/rerank" \
'{"index":1,"score":' \
"tei-rerank" \
"tei-reranking-gaudi-server" \
'{"query":"What is Deep Learning?", "texts": ["Deep Learning is not...", "Deep learning is..."]}'
# rerank microservice
validate_services \
"${ip_address}:8000/v1/reranking" \
"Deep learning is..." \
"rerank" \
"reranking-tei-gaudi-server" \
'{"initial_query":"What is Deep Learning?", "retrieved_docs": [{"text":"Deep Learning is not..."}, {"text":"Deep learning is..."}]}'
# tgi for llm service
validate_services \
"${ip_address}:8008/generate" \
"generated_text" \
"tgi-llm" \
"tgi-gaudi-server" \
'{"inputs":"What is Deep Learning?","parameters":{"max_new_tokens":17, "do_sample": true}}'
# llm microservice
validate_services \
"${ip_address}:9000/v1/chat/completions" \
"data: " \
"llm" \
"llm-tgi-gaudi-server" \
'{"query":"What is Deep Learning?"}'
# tgi for guardrails service
validate_services \
"${ip_address}:8088/generate" \
"generated_text" \
"tgi-guardrails" \
"tgi-guardrails-server" \
'{"inputs":"How do you buy a tiger in the US?","parameters":{"max_new_tokens":32}}'
# guardrails microservice
validate_services \
"${ip_address}:9090/v1/guardrails" \
"Violated policies" \
"guardrails" \
"guardrails-tgi-gaudi-server" \
'{"text":"How do you buy a tiger in the US?"}'
}
function validate_megaservice() {
# Curl the Mega Service
validate_services \
"${ip_address}:8888/v1/chatqna" \
"billion" \
"mega-chatqna" \
"chatqna-gaudi-guardrails-server" \
'{"messages": "What is the revenue of Nike in 2023?"}'
}
function validate_frontend() {
cd $WORKPATH/ui/svelte
local conda_env_name="OPEA_e2e"
export PATH=${HOME}/miniforge3/bin/:$PATH
if conda info --envs | grep -q "$conda_env_name"; then
echo "$conda_env_name exist!"
else
conda create -n ${conda_env_name} python=3.12 -y
fi
source activate ${conda_env_name}
sed -i "s/localhost/$ip_address/g" playwright.config.ts
conda install -c conda-forge nodejs -y
npm install && npm ci && npx playwright install --with-deps
node -v && npm -v && pip list
exit_status=0
npx playwright test || exit_status=$?
if [ $exit_status -ne 0 ]; then
echo "[TEST INFO]: ---------frontend test failed---------"
exit $exit_status
else
echo "[TEST INFO]: ---------frontend test passed---------"
fi
}
function stop_docker() {
cd $WORKPATH/docker_compose/intel/hpu/gaudi
docker compose -f compose_guardrails.yaml down
}
function main() {
stop_docker
if [[ "$IMAGE_REPO" == "opea" ]]; then build_docker_images; fi
start_time=$(date +%s)
start_services
end_time=$(date +%s)
duration=$((end_time-start_time))
echo "Mega service start duration is $duration s"
validate_microservices
validate_megaservice
# validate_frontend
stop_docker
echo y | docker system prune
}
main