Files
GenAIExamples/ChatQnA/tests/test_compose_on_rocm.sh
2025-02-18 16:23:49 +08:00

275 lines
10 KiB
Bash

#!/bin/bash
# Copyright (C) 2024 Advanced Micro Devices, Inc.
# SPDX-License-Identifier: Apache-2.0
set -xe
IMAGE_REPO=${IMAGE_REPO:-"opea"}
IMAGE_TAG=${IMAGE_TAG:-"latest"}
echo "REGISTRY=IMAGE_REPO=${IMAGE_REPO}"
echo "TAG=IMAGE_TAG=${IMAGE_TAG}"
export REGISTRY=${IMAGE_REPO}
export TAG=${IMAGE_TAG}
WORKPATH=$(dirname "$PWD")
LOG_PATH="$WORKPATH/tests"
ip_address=$(hostname -I | awk '{print $1}')
export HOST_IP=${ip_address}
export CHATQNA_TGI_SERVICE_IMAGE="ghcr.io/huggingface/text-generation-inference:2.3.1-rocm"
export CHATQNA_EMBEDDING_MODEL_ID="BAAI/bge-base-en-v1.5"
export CHATQNA_RERANK_MODEL_ID="BAAI/bge-reranker-base"
export CHATQNA_LLM_MODEL_ID="meta-llama/Meta-Llama-3-8B-Instruct"
export CHATQNA_TGI_SERVICE_PORT=9009
export CHATQNA_TEI_EMBEDDING_PORT=8090
export CHATQNA_TEI_EMBEDDING_ENDPOINT="http://${HOST_IP}:${CHATQNA_TEI_EMBEDDING_PORT}"
export CHATQNA_TEI_RERANKING_PORT=8808
export CHATQNA_REDIS_VECTOR_PORT=6379
export CHATQNA_REDIS_VECTOR_INSIGHT_PORT=8001
export CHATQNA_REDIS_DATAPREP_PORT=6007
export CHATQNA_REDIS_RETRIEVER_PORT=7000
export CHATQNA_INDEX_NAME="rag-redis"
export CHATQNA_MEGA_SERVICE_HOST_IP=${HOST_IP}
export CHATQNA_RETRIEVER_SERVICE_HOST_IP=${HOST_IP}
export CHATQNA_BACKEND_SERVICE_ENDPOINT="http://127.0.0.1:${CHATQNA_BACKEND_SERVICE_PORT}/v1/chatqna"
export CHATQNA_DATAPREP_SERVICE_ENDPOINT="http://127.0.0.1:${CHATQNA_REDIS_DATAPREP_PORT}/v1/dataprep/ingest"
export CHATQNA_DATAPREP_GET_FILE_ENDPOINT="http://127.0.0.1:${CHATQNA_REDIS_DATAPREP_PORT}/v1/dataprep/get"
export CHATQNA_DATAPREP_DELETE_FILE_ENDPOINT="http://127.0.0.1:${CHATQNA_REDIS_DATAPREP_PORT}/v1/dataprep/delete"
export CHATQNA_FRONTEND_SERVICE_IP=${HOST_IP}
export CHATQNA_FRONTEND_SERVICE_PORT=15173
export CHATQNA_BACKEND_SERVICE_NAME=chatqna
export CHATQNA_BACKEND_SERVICE_IP=${HOST_IP}
export CHATQNA_BACKEND_SERVICE_PORT=8888
export CHATQNA_REDIS_URL="redis://${HOST_IP}:${CHATQNA_REDIS_VECTOR_PORT}"
export CHATQNA_EMBEDDING_SERVICE_HOST_IP=${HOST_IP}
export CHATQNA_RERANK_SERVICE_HOST_IP=${HOST_IP}
export CHATQNA_LLM_SERVICE_HOST_IP=${HOST_IP}
export CHATQNA_NGINX_PORT=80
export CHATQNA_HUGGINGFACEHUB_API_TOKEN=${HUGGINGFACEHUB_API_TOKEN}
export PATH="/home/huggingface/miniconda3/bin:$PATH"
function build_docker_images() {
opea_branch=${opea_branch:-"main"}
# If the opea_branch isn't main, replace the git clone branch in Dockerfile.
if [[ "${opea_branch}" != "main" ]]; then
cd $WORKPATH
OLD_STRING="RUN git clone --depth 1 https://github.com/opea-project/GenAIComps.git"
NEW_STRING="RUN git clone --depth 1 --branch ${opea_branch} https://github.com/opea-project/GenAIComps.git"
find . -type f -name "Dockerfile*" | while read -r file; do
echo "Processing file: $file"
sed -i "s|$OLD_STRING|$NEW_STRING|g" "$file"
done
fi
cd $WORKPATH/docker_image_build
git clone --depth 1 --branch ${opea_branch} https://github.com/opea-project/GenAIComps.git
echo "Build all the images with --no-cache, check docker_image_build.log for details..."
service_list="chatqna chatqna-ui dataprep retriever nginx"
docker compose -f build.yaml build ${service_list} --no-cache > "${LOG_PATH}"/docker_image_build.log
docker pull ghcr.io/huggingface/text-generation-inference:2.3.1-rocm
docker pull ghcr.io/huggingface/text-embeddings-inference:cpu-1.5
docker images && sleep 1s
}
function start_services() {
cd "$WORKPATH"/docker_compose/amd/gpu/rocm
# Start Docker Containers
docker compose -f compose.yaml up -d > "${LOG_PATH}"/start_services_with_compose.log
n=0
until [[ "$n" -ge 160 ]]; do
docker logs chatqna-tgi-server > "${LOG_PATH}"/tgi_service_start.log
if grep -q Connected "${LOG_PATH}"/tgi_service_start.log; then
break
fi
sleep 5s
n=$((n+1))
done
echo "all containers start!"
}
function validate_service() {
local URL="$1"
local EXPECTED_RESULT="$2"
local SERVICE_NAME="$3"
local DOCKER_NAME="$4"
local INPUT_DATA="$5"
if [[ $SERVICE_NAME == *"dataprep_upload_file"* ]]; then
cd "$LOG_PATH"
HTTP_RESPONSE=$(curl --silent --write-out "HTTPSTATUS:%{http_code}" -X POST -F 'files=@./dataprep_file.txt' -H 'Content-Type: multipart/form-data' "$URL")
elif [[ $SERVICE_NAME == *"dataprep_upload_link"* ]]; then
HTTP_RESPONSE=$(curl --silent --write-out "HTTPSTATUS:%{http_code}" -X POST -F 'link_list=["https://www.ces.tech/"]' "$URL")
elif [[ $SERVICE_NAME == *"dataprep_get"* ]]; then
HTTP_RESPONSE=$(curl --silent --write-out "HTTPSTATUS:%{http_code}" -X POST -H 'Content-Type: application/json' "$URL")
elif [[ $SERVICE_NAME == *"dataprep_del"* ]]; then
HTTP_RESPONSE=$(curl --silent --write-out "HTTPSTATUS:%{http_code}" -X POST -d '{"file_path": "all"}' -H 'Content-Type: application/json' "$URL")
else
HTTP_RESPONSE=$(curl --silent --write-out "HTTPSTATUS:%{http_code}" -X POST -d "$INPUT_DATA" -H 'Content-Type: application/json' "$URL")
fi
HTTP_STATUS=$(echo "$HTTP_RESPONSE" | tr -d '\n' | sed -e 's/.*HTTPSTATUS://')
RESPONSE_BODY=$(echo "$HTTP_RESPONSE" | sed -e 's/HTTPSTATUS\:.*//g')
docker logs "${DOCKER_NAME}" >> "${LOG_PATH}"/"${SERVICE_NAME}".log
# check response status
if [ "$HTTP_STATUS" -ne "200" ]; then
echo "[ $SERVICE_NAME ] HTTP status is not 200. Received status was $HTTP_STATUS"
exit 1
else
echo "[ $SERVICE_NAME ] HTTP status is 200. Checking content..."
fi
# check response body
if [[ "$RESPONSE_BODY" != *"$EXPECTED_RESULT"* ]]; then
echo "[ $SERVICE_NAME ] Content does not match the expected result: $RESPONSE_BODY"
exit 1
else
echo "[ $SERVICE_NAME ] Content is as expected."
fi
sleep 1s
}
function validate_microservices() {
# Check if the microservices are running correctly.
# tei for embedding service
validate_service \
"${ip_address}:8090/embed" \
"[[" \
"tei-embedding" \
"chatqna-tei-embedding-server" \
'{"inputs":"What is Deep Learning?"}'
sleep 1m # retrieval can't curl as expected, try to wait for more time
# test /v1/dataprep/ingest upload file
echo "Deep learning is a subset of machine learning that utilizes neural networks with multiple layers to analyze various levels of abstract data representations. It enables computers to identify patterns and make decisions with minimal human intervention by learning from large amounts of data." > "$LOG_PATH"/dataprep_file.txt
validate_service \
"http://${ip_address}:6007/v1/dataprep/ingest" \
"Data preparation succeeded" \
"dataprep_upload_file" \
"dataprep-redis-server"
# test /v1/dataprep/ingest upload link
validate_service \
"http://${ip_address}:6007/v1/dataprep/ingest" \
"Data preparation succeeded" \
"dataprep_upload_link" \
"dataprep-redis-server"
# test /v1/dataprep/get
validate_service \
"http://${ip_address}:6007/v1/dataprep/get" \
'{"name":' \
"dataprep_get" \
"dataprep-redis-server"
# test /v1/dataprep/delete
validate_service \
"http://${ip_address}:6007/v1/dataprep/delete" \
'{"status":true}' \
"dataprep_del" \
"dataprep-redis-server"
# retrieval microservice
test_embedding=$(python3 -c "import random; embedding = [random.uniform(-1, 1) for _ in range(768)]; print(embedding)")
validate_service \
"${ip_address}:7000/v1/retrieval" \
"retrieved_docs" \
"retrieval-microservice" \
"chatqna-retriever-redis-server" \
"{\"text\":\"What is the revenue of Nike in 2023?\",\"embedding\":${test_embedding}}"
# tei for rerank microservice
validate_service \
"${ip_address}:8808/rerank" \
'{"index":1,"score":' \
"tei-rerank" \
"chatqna-tei-reranking-server" \
'{"query":"What is Deep Learning?", "texts": ["Deep Learning is not...", "Deep learning is..."]}'
# tgi for llm service
validate_service \
"${ip_address}:9009/generate" \
"generated_text" \
"tgi-llm" \
"chatqna-tgi-server" \
'{"inputs":"What is Deep Learning?","parameters":{"max_new_tokens":17, "do_sample": true}}'
}
function validate_megaservice() {
# Curl the Mega Service
validate_service \
"${ip_address}:8888/v1/chatqna" \
"data: " \
"chatqna-megaservice" \
"chatqna-backend-server" \
'{"messages": "What is the revenue of Nike in 2023?"}'
}
function validate_frontend() {
echo "[ TEST INFO ]: --------- frontend test started ---------"
cd "$WORKPATH"/ui/svelte
local conda_env_name="OPEA_e2e"
export PATH=${HOME}/miniforge3/bin/:$PATH
if conda info --envs | grep -q "$conda_env_name"; then
echo "$conda_env_name exist!"
else
conda create -n ${conda_env_name} python=3.12 -y
fi
source activate ${conda_env_name}
echo "[ TEST INFO ]: --------- conda env activated ---------"
sed -i "s/localhost/$ip_address/g" playwright.config.ts
conda install -c conda-forge nodejs=22.6.0 -y
npm install && npm ci && npx playwright install --with-deps
node -v && npm -v && pip list
exit_status=0
npx playwright test || exit_status=$?
if [ $exit_status -ne 0 ]; then
echo "[TEST INFO]: ---------frontend test failed---------"
exit $exit_status
else
echo "[TEST INFO]: ---------frontend test passed---------"
fi
}
function stop_docker() {
cd "$WORKPATH"/docker_compose/amd/gpu/rocm
docker compose stop && docker compose rm -f
}
function main() {
stop_docker
if [[ "$IMAGE_REPO" == "opea" ]]; then build_docker_images; fi
start_time=$(date +%s)
start_services
end_time=$(date +%s)
duration=$((end_time-start_time))
echo "Mega service start duration is $duration s" && sleep 1s
validate_microservices
echo "==== microservices validated ===="
validate_megaservice
echo "==== megaservice validated ===="
validate_frontend
echo "==== frontend validated ===="
stop_docker
echo y | docker system prune
}
main