Files
GenAIExamples/ChatQnA/tests/test_compose_faqgen_on_xeon.sh

268 lines
9.7 KiB
Bash

#!/bin/bash
# Copyright (C) 2024 Intel Corporation
# SPDX-License-Identifier: Apache-2.0
set -xe
IMAGE_REPO=${IMAGE_REPO:-"opea"}
IMAGE_TAG=${IMAGE_TAG:-"latest"}
echo "REGISTRY=IMAGE_REPO=${IMAGE_REPO}"
echo "TAG=IMAGE_TAG=${IMAGE_TAG}"
export REGISTRY=${IMAGE_REPO}
export TAG=${IMAGE_TAG}
export MODEL_CACHE=${model_cache:-"/data/cache"}
WORKPATH=$(dirname "$PWD")
LOG_PATH="$WORKPATH/tests"
ip_address=$(hostname -I | awk '{print $1}')
function build_docker_images() {
opea_branch=${opea_branch:-"main"}
cd $WORKPATH/docker_image_build
git clone --depth 1 --branch ${opea_branch} https://github.com/opea-project/GenAIComps.git
pushd GenAIComps
echo "GenAIComps test commit is $(git rev-parse HEAD)"
docker build --no-cache -t ${REGISTRY}/comps-base:${TAG} --build-arg https_proxy=$https_proxy --build-arg http_proxy=$http_proxy -f Dockerfile .
popd && sleep 1s
git clone https://github.com/vllm-project/vllm.git && cd vllm
VLLM_VER="v0.8.3"
echo "Check out vLLM tag ${VLLM_VER}"
git checkout ${VLLM_VER} &> /dev/null && cd ../
echo "Build all the images with --no-cache, check docker_image_build.log for details..."
service_list="chatqna chatqna-ui dataprep retriever llm-faqgen vllm nginx"
docker compose -f build.yaml build ${service_list} --no-cache > ${LOG_PATH}/docker_image_build.log
docker images && sleep 1s
}
function start_services() {
cd $WORKPATH/docker_compose/intel/cpu/xeon
export LLM_SERVER_PORT=9001
export CHATQNA_REDIS_VECTOR_PORT=6377
export CHATQNA_REDIS_VECTOR_INSIGHT_PORT=8006
export CHATQNA_FRONTEND_SERVICE_PORT=5175
export VLLM_SKIP_WARMUP=true
export LOGFLAG=True
export http_proxy=${http_proxy}
export https_proxy=${https_proxy}
export no_proxy="${ip_address},redis-vector-db,dataprep-redis-service,tei-embedding-service,retriever,tei-reranking-service,tgi-service,vllm-service,guardrails,llm-faqgen,chatqna-xeon-backend-server,chatqna-xeon-ui-server,chatqna-xeon-nginx-server"
source set_env.sh
# Start Docker Containers
docker compose -f compose_faqgen.yaml up -d > ${LOG_PATH}/start_services_with_compose.log
sleep 30s
}
function validate_service() {
local URL="$1"
local EXPECTED_RESULT="$2"
local SERVICE_NAME="$3"
local DOCKER_NAME="$4"
local INPUT_DATA="$5"
if [[ $SERVICE_NAME == *"dataprep_upload_file"* ]]; then
cd $LOG_PATH
HTTP_RESPONSE=$(curl --silent --write-out "HTTPSTATUS:%{http_code}" -X POST -F 'files=@./dataprep_file.txt' -H 'Content-Type: multipart/form-data' "$URL")
elif [[ $SERVICE_NAME == *"dataprep_upload_link"* ]]; then
HTTP_RESPONSE=$(curl --silent --write-out "HTTPSTATUS:%{http_code}" -X POST -F 'link_list=["https://www.ces.tech/"]' "$URL")
elif [[ $SERVICE_NAME == *"dataprep_get"* ]]; then
HTTP_RESPONSE=$(curl --silent --write-out "HTTPSTATUS:%{http_code}" -X POST -H 'Content-Type: application/json' "$URL")
elif [[ $SERVICE_NAME == *"dataprep_del"* ]]; then
HTTP_RESPONSE=$(curl --silent --write-out "HTTPSTATUS:%{http_code}" -X POST -d '{"file_path": "all"}' -H 'Content-Type: application/json' "$URL")
else
HTTP_RESPONSE=$(curl --silent --write-out "HTTPSTATUS:%{http_code}" -X POST -d "$INPUT_DATA" -H 'Content-Type: application/json' "$URL")
fi
HTTP_STATUS=$(echo $HTTP_RESPONSE | tr -d '\n' | sed -e 's/.*HTTPSTATUS://')
RESPONSE_BODY=$(echo $HTTP_RESPONSE | sed -e 's/HTTPSTATUS\:.*//g')
docker logs ${DOCKER_NAME} >> ${LOG_PATH}/${SERVICE_NAME}.log
# check response status
if [ "$HTTP_STATUS" -ne "200" ]; then
echo "[ $SERVICE_NAME ] HTTP status is not 200. Received status was $HTTP_STATUS"
exit 1
else
echo "[ $SERVICE_NAME ] HTTP status is 200. Checking content..."
fi
echo "Response"
echo $RESPONSE_BODY
echo "Expected Result"
echo $EXPECTED_RESULT
# check response body
if [[ "$RESPONSE_BODY" != *"$EXPECTED_RESULT"* ]]; then
echo "[ $SERVICE_NAME ] Content does not match the expected result: $RESPONSE_BODY"
exit 1
else
echo "[ $SERVICE_NAME ] Content is as expected."
fi
sleep 1s
}
function validate_microservices() {
# Check if the microservices are running correctly.
sleep 3m
# tei for embedding service
validate_service \
"${ip_address}:6006/embed" \
"[[" \
"tei-embedding" \
"tei-embedding-server" \
'{"inputs":"What is Deep Learning?"}'
sleep 1m # retrieval can't curl as expected, try to wait for more time
# test /v1/dataprep upload file
echo "Deep learning is a subset of machine learning that utilizes neural networks with multiple layers to analyze various levels of abstract data representations. It enables computers to identify patterns and make decisions with minimal human intervention by learning from large amounts of data." > $LOG_PATH/dataprep_file.txt
validate_service \
"http://${ip_address}:6007/v1/dataprep/ingest" \
"Data preparation succeeded" \
"dataprep_upload_file" \
"dataprep-redis-server"
# test /v1/dataprep upload link
validate_service \
"http://${ip_address}:6007/v1/dataprep/ingest" \
"Data preparation succeeded" \
"dataprep_upload_link" \
"dataprep-redis-server"
# test /v1/dataprep/get_file
validate_service \
"http://${ip_address}:6007/v1/dataprep/get" \
'{"name":' \
"dataprep_get" \
"dataprep-redis-server"
# test /v1/dataprep/delete_file
validate_service \
"http://${ip_address}:6007/v1/dataprep/delete" \
'{"status":true}' \
"dataprep_del" \
"dataprep-redis-server"
# retrieval microservice
test_embedding=$(python3 -c "import random; embedding = [random.uniform(-1, 1) for _ in range(768)]; print(embedding)")
validate_service \
"${ip_address}:7000/v1/retrieval" \
" " \
"retrieval" \
"retriever-redis-server" \
"{\"text\":\"What is the revenue of Nike in 2023?\",\"embedding\":${test_embedding}}"
# tei for rerank microservice
echo "validate tei..."
validate_service \
"${ip_address}:8808/rerank" \
'{"index":1,"score":' \
"tei-rerank" \
"tei-reranking-server" \
'{"query":"What is Deep Learning?", "texts": ["Deep Learning is not...", "Deep learning is..."]}'
# vllm for llm service
echo "validate vllm..."
validate_service \
"${ip_address}:${LLM_ENDPOINT_PORT}/v1/chat/completions" \
"content" \
"vllm-llm" \
"vllm-server" \
'{"model": "meta-llama/Meta-Llama-3-8B-Instruct", "messages": [{"role": "user", "content": "What is Deep Learning?"}], "max_tokens":17}'
# faqgen llm microservice
echo "validate llm-faqgen..."
validate_service \
"${ip_address}:${LLM_SERVER_PORT}/v1/faqgen" \
"text" \
"llm" \
"llm-faqgen-server" \
'{"messages":"Text Embeddings Inference (TEI) is a toolkit for deploying and serving open source text embeddings and sequence classification models. TEI enables high-performance extraction for the most popular models, including FlagEmbedding, Ember, GTE and E5."}'
}
function validate_megaservice() {
# Curl the Mega Service
validate_service \
"${ip_address}:${CHATQNA_BACKEND_PORT}/v1/chatqna" \
"Embed" \
"chatqna-megaservice" \
"chatqna-xeon-backend-server" \
'{"messages": "Text Embeddings Inference (TEI) is a toolkit for deploying and serving open source text embeddings and sequence classification models. TEI enables high-performance extraction for the most popular models, including FlagEmbedding, Ember, GTE and E5.","max_tokens":32}'
validate_service \
"${ip_address}:${CHATQNA_BACKEND_PORT}/v1/chatqna" \
"Embed" \
"chatqna-megaservice" \
"chatqna-xeon-backend-server" \
'{"messages": "Text Embeddings Inference (TEI) is a toolkit for deploying and serving open source text embeddings and sequence classification models. TEI enables high-performance extraction for the most popular models, including FlagEmbedding, Ember, GTE and E5.","max_tokens":32,"stream":false}'
}
function validate_frontend() {
cd $WORKPATH/ui/svelte
local conda_env_name="OPEA_e2e"
export PATH=${HOME}/miniforge3/bin/:$PATH
if conda info --envs | grep -q "$conda_env_name"; then
echo "$conda_env_name exist!"
else
conda create -n ${conda_env_name} python=3.12 -y
fi
source activate ${conda_env_name}
sed -i "s/localhost/$ip_address/g" playwright.config.ts
conda install -c conda-forge nodejs=22.6.0 -y
npm install && npm ci && npx playwright install --with-deps
node -v && npm -v && pip list
exit_status=0
npx playwright test || exit_status=$?
if [ $exit_status -ne 0 ]; then
echo "[TEST INFO]: ---------frontend test failed---------"
exit $exit_status
else
echo "[TEST INFO]: ---------frontend test passed---------"
fi
}
function stop_docker() {
cd $WORKPATH/docker_compose/intel/cpu/xeon
docker compose -f compose_faqgen.yaml down
}
function main() {
echo "::group::stop_docker"
stop_docker
echo "::endgroup::"
echo "::group::build_docker_images"
if [[ "$IMAGE_REPO" == "opea" ]]; then build_docker_images; fi
echo "::endgroup::"
echo "::group::start_services"
start_services
echo "::endgroup::"
echo "::group::validate_microservices"
validate_microservices
echo "::endgroup::"
echo "::group::validate_megaservice"
validate_megaservice
echo "::endgroup::"
echo "::group::validate_frontend"
validate_frontend
echo "::endgroup::"
echo "::group::stop_docker"
stop_docker
echo "::endgroup::"
docker system prune -f
}
main