Files
GenAIExamples/ChatQnA/tests/test_compose_faqgen_on_rocm.sh

236 lines
8.3 KiB
Bash

#!/bin/bash
# Copyright (C) 2024 Advanced Micro Devices, Inc.
# SPDX-License-Identifier: Apache-2.0
set -xe
IMAGE_REPO=${IMAGE_REPO:-"opea"}
IMAGE_TAG=${IMAGE_TAG:-"latest"}
echo "REGISTRY=IMAGE_REPO=${IMAGE_REPO}"
echo "TAG=IMAGE_TAG=${IMAGE_TAG}"
export REGISTRY=${IMAGE_REPO}
export TAG=${IMAGE_TAG}
export MODEL_CACHE=${model_cache:-"./data"}
WORKPATH=$(dirname "$PWD")
LOG_PATH="$WORKPATH/tests"
ip_address=$(hostname -I | awk '{print $1}')
source $WORKPATH/docker_compose/amd/gpu/rocm/set_env_faqgen.sh
export PATH="~/miniconda3/bin:$PATH"
function build_docker_images() {
opea_branch=${opea_branch:-"main"}
cd $WORKPATH/docker_image_build
git clone --depth 1 --branch ${opea_branch} https://github.com/opea-project/GenAIComps.git
pushd GenAIComps
echo "GenAIComps test commit is $(git rev-parse HEAD)"
docker build --no-cache -t ${REGISTRY}/comps-base:${TAG} --build-arg https_proxy=$https_proxy --build-arg http_proxy=$http_proxy -f Dockerfile .
popd && sleep 1s
echo "Build all the images with --no-cache, check docker_image_build.log for details..."
service_list="chatqna chatqna-ui dataprep retriever llm-faqgen nginx"
docker compose -f build.yaml build ${service_list} --no-cache > "${LOG_PATH}"/docker_image_build.log
docker images && sleep 1s
}
function start_services() {
cd "$WORKPATH"/docker_compose/amd/gpu/rocm
# Start Docker Containers
docker compose -f compose_faqgen.yaml up -d > "${LOG_PATH}"/start_services_with_compose.log
n=0
until [[ "$n" -ge 160 ]]; do
docker logs chatqna-tgi-service > "${LOG_PATH}"/tgi_service_start.log
if grep -q Connected "${LOG_PATH}"/tgi_service_start.log; then
break
fi
sleep 5s
n=$((n+1))
done
echo "all containers start!"
}
function validate_service() {
local URL="$1"
local EXPECTED_RESULT="$2"
local SERVICE_NAME="$3"
local DOCKER_NAME="$4"
local INPUT_DATA="$5"
if [[ $SERVICE_NAME == *"dataprep_upload_file"* ]]; then
cd "$LOG_PATH"
HTTP_RESPONSE=$(curl --silent --write-out "HTTPSTATUS:%{http_code}" -X POST -F 'files=@./dataprep_file.txt' -H 'Content-Type: multipart/form-data' "$URL")
elif [[ $SERVICE_NAME == *"dataprep_upload_link"* ]]; then
HTTP_RESPONSE=$(curl --silent --write-out "HTTPSTATUS:%{http_code}" -X POST -F 'link_list=["https://www.ces.tech/"]' "$URL")
elif [[ $SERVICE_NAME == *"dataprep_get"* ]]; then
HTTP_RESPONSE=$(curl --silent --write-out "HTTPSTATUS:%{http_code}" -X POST -H 'Content-Type: application/json' "$URL")
elif [[ $SERVICE_NAME == *"dataprep_del"* ]]; then
HTTP_RESPONSE=$(curl --silent --write-out "HTTPSTATUS:%{http_code}" -X POST -d '{"file_path": "all"}' -H 'Content-Type: application/json' "$URL")
else
HTTP_RESPONSE=$(curl --silent --write-out "HTTPSTATUS:%{http_code}" -X POST -d "$INPUT_DATA" -H 'Content-Type: application/json' "$URL")
fi
HTTP_STATUS=$(echo "$HTTP_RESPONSE" | tr -d '\n' | sed -e 's/.*HTTPSTATUS://')
RESPONSE_BODY=$(echo "$HTTP_RESPONSE" | sed -e 's/HTTPSTATUS\:.*//g')
docker logs "${DOCKER_NAME}" >> "${LOG_PATH}"/"${SERVICE_NAME}".log
# check response status
if [ "$HTTP_STATUS" -ne "200" ]; then
echo "[ $SERVICE_NAME ] HTTP status is not 200. Received status was $HTTP_STATUS"
exit 1
else
echo "[ $SERVICE_NAME ] HTTP status is 200. Checking content..."
fi
# check response body
if [[ "$RESPONSE_BODY" != *"$EXPECTED_RESULT"* ]]; then
echo "[ $SERVICE_NAME ] Content does not match the expected result: $RESPONSE_BODY"
exit 1
else
echo "[ $SERVICE_NAME ] Content is as expected."
fi
sleep 1s
}
function validate_microservices() {
# Check if the microservices are running correctly.
# tei for embedding service
validate_service \
"${ip_address}:${CHATQNA_TEI_EMBEDDING_PORT}/embed" \
"[[" \
"tei-embedding" \
"chatqna-tei-embedding-service" \
'{"inputs":"What is Deep Learning?"}'
sleep 1m # retrieval can't curl as expected, try to wait for more time
# retrieval microservice
test_embedding=$(python3 -c "import random; embedding = [random.uniform(-1, 1) for _ in range(768)]; print(embedding)")
validate_service \
"${ip_address}:${CHATQNA_REDIS_RETRIEVER_PORT}/v1/retrieval" \
" " \
"retrieval-microservice" \
"chatqna-retriever" \
"{\"text\":\"What is the revenue of Nike in 2023?\",\"embedding\":${test_embedding}}"
# tei for rerank microservice
validate_service \
"${ip_address}:${CHATQNA_TEI_RERANKING_PORT}/rerank" \
'{"index":1,"score":' \
"tei-rerank" \
"chatqna-tei-reranking-service" \
'{"query":"What is Deep Learning?", "texts": ["Deep Learning is not...", "Deep learning is..."]}'
# tgi for llm service
validate_service \
"${ip_address}:${CHATQNA_TGI_SERVICE_PORT}/generate" \
"generated_text" \
"tgi-llm" \
"chatqna-tgi-service" \
'{"inputs":"What is Deep Learning?","parameters":{"max_new_tokens":17, "do_sample": true}}'
# faqgen llm microservice
echo "validate llm-faqgen..."
validate_service \
"${ip_address}:${CHATQNA_LLM_FAQGEN_PORT}/v1/faqgen" \
"text" \
"llm" \
"chatqna-llm-faqgen" \
'{"messages":"Text Embeddings Inference (TEI) is a toolkit for deploying and serving open source text embeddings and sequence classification models. TEI enables high-performance extraction for the most popular models, including FlagEmbedding, Ember, GTE and E5."}'
}
function validate_megaservice() {
# Curl the Mega Service
validate_service \
"${ip_address}:${CHATQNA_BACKEND_SERVICE_PORT}/v1/chatqna" \
"Embed" \
"chatqna-megaservice" \
"chatqna-backend-server" \
'{"messages": "Text Embeddings Inference (TEI) is a toolkit for deploying and serving open source text embeddings and sequence classification models. TEI enables high-performance extraction for the most popular models, including FlagEmbedding, Ember, GTE and E5.","max_tokens":32}'
validate_service \
"${ip_address}:${CHATQNA_BACKEND_SERVICE_PORT}/v1/chatqna" \
"Embed" \
"chatqna-megaservice" \
"chatqna-backend-server" \
'{"messages": "Text Embeddings Inference (TEI) is a toolkit for deploying and serving open source text embeddings and sequence classification models. TEI enables high-performance extraction for the most popular models, including FlagEmbedding, Ember, GTE and E5.","max_tokens":32,"stream":false}'
}
function validate_frontend() {
echo "[ TEST INFO ]: --------- frontend test started ---------"
cd "$WORKPATH"/ui/svelte
local conda_env_name="OPEA_e2e"
export PATH=${HOME}/miniconda3/bin/:$PATH
if conda info --envs | grep -q "$conda_env_name"; then
echo "$conda_env_name exist!"
else
conda create -n ${conda_env_name} python=3.12 -y
fi
source activate ${conda_env_name}
echo "[ TEST INFO ]: --------- conda env activated ---------"
sed -i "s/localhost/$ip_address/g" playwright.config.ts
conda install -c conda-forge nodejs=22.6.0 -y
npm install && npm ci && npx playwright install --with-deps
node -v && npm -v && pip list
exit_status=0
npx playwright test || exit_status=$?
if [ $exit_status -ne 0 ]; then
echo "[TEST INFO]: ---------frontend test failed---------"
exit $exit_status
else
echo "[TEST INFO]: ---------frontend test passed---------"
fi
}
function stop_docker() {
cd "$WORKPATH"/docker_compose/amd/gpu/rocm
docker compose -f compose_faqgen.yaml stop && docker compose rm -f
}
function main() {
echo "::group::stop_docker"
stop_docker
echo "::endgroup::"
echo "::group::build_docker_images"
if [[ "$IMAGE_REPO" == "opea" ]]; then build_docker_images; fi
echo "::endgroup::"
echo "::group::start_services"
start_services
echo "::endgroup::"
echo "::group::validate_microservices"
validate_microservices
echo "::endgroup::"
echo "::group::validate_megaservice"
validate_megaservice
echo "::endgroup::"
echo "::group::validate_frontend"
validate_frontend
echo "::endgroup::"
echo "::group::stop_docker"
stop_docker
echo "::endgroup::"
docker system prune -f
}
main