Files
GenAIExamples/MultimodalQnA/multimodalqna.py
2025-01-06 13:25:55 +08:00

336 lines
14 KiB
Python

# Copyright (C) 2024 Intel Corporation
# SPDX-License-Identifier: Apache-2.0
import base64
import json
import os
from io import BytesIO
import requests
from comps import MegaServiceEndpoint, MicroService, ServiceOrchestrator, ServiceRoleType, ServiceType
from comps.cores.proto.api_protocol import (
ChatCompletionRequest,
ChatCompletionResponse,
ChatCompletionResponseChoice,
ChatMessage,
UsageInfo,
)
from comps.cores.proto.docarray import ImageDoc, LLMParams, TextDoc, TextImageDoc
from fastapi import Request
from fastapi.responses import JSONResponse, StreamingResponse
from PIL import Image
MEGA_SERVICE_PORT = int(os.getenv("MEGA_SERVICE_PORT", 8888))
MM_EMBEDDING_SERVICE_HOST_IP = os.getenv("MM_EMBEDDING_SERVICE_HOST_IP", "0.0.0.0")
MM_EMBEDDING_PORT_MICROSERVICE = int(os.getenv("MM_EMBEDDING_PORT_MICROSERVICE", 6000))
MM_RETRIEVER_SERVICE_HOST_IP = os.getenv("MM_RETRIEVER_SERVICE_HOST_IP", "0.0.0.0")
MM_RETRIEVER_SERVICE_PORT = int(os.getenv("MM_RETRIEVER_SERVICE_PORT", 7000))
LVM_SERVICE_HOST_IP = os.getenv("LVM_SERVICE_HOST_IP", "0.0.0.0")
LVM_SERVICE_PORT = int(os.getenv("LVM_SERVICE_PORT", 9399))
WHISPER_SERVER_ENDPOINT = os.getenv("WHISPER_SERVER_ENDPOINT", "http://0.0.0.0:7066/v1/asr")
def align_inputs(self, inputs, cur_node, runtime_graph, llm_parameters_dict, **kwargs):
if self.services[cur_node].service_type == ServiceType.EMBEDDING:
if "text" in inputs and "image" in inputs:
text_doc = TextDoc(text=inputs["text"])
image_doc = ImageDoc(base64_image=inputs["image"])
inputs = TextImageDoc(text=text_doc, image=image_doc).dict()
elif "image" in inputs:
inputs = ImageDoc(base64_image=inputs["image"]).dict()
elif "text" in inputs:
inputs = TextDoc(text=inputs["text"]).dict()
return inputs
class MultimodalQnAService:
def __init__(self, host="0.0.0.0", port=8000):
self.host = host
self.port = port
ServiceOrchestrator.align_inputs = align_inputs
self.lvm_megaservice = ServiceOrchestrator()
self.megaservice = ServiceOrchestrator()
self.endpoint = str(MegaServiceEndpoint.MULTIMODAL_QNA)
def add_remote_service(self):
mm_embedding = MicroService(
name="embedding",
host=MM_EMBEDDING_SERVICE_HOST_IP,
port=MM_EMBEDDING_PORT_MICROSERVICE,
endpoint="/v1/embeddings",
use_remote_service=True,
service_type=ServiceType.EMBEDDING,
)
mm_retriever = MicroService(
name="retriever",
host=MM_RETRIEVER_SERVICE_HOST_IP,
port=MM_RETRIEVER_SERVICE_PORT,
endpoint="/v1/retrieval",
use_remote_service=True,
service_type=ServiceType.RETRIEVER,
)
lvm = MicroService(
name="lvm",
host=LVM_SERVICE_HOST_IP,
port=LVM_SERVICE_PORT,
endpoint="/v1/lvm",
use_remote_service=True,
service_type=ServiceType.LVM,
)
# for mmrag megaservice
self.megaservice.add(mm_embedding).add(mm_retriever).add(lvm)
self.megaservice.flow_to(mm_embedding, mm_retriever)
self.megaservice.flow_to(mm_retriever, lvm)
# for lvm megaservice
self.lvm_megaservice.add(lvm)
def _handle_message(self, messages):
images = []
audios = []
b64_types = {}
messages_dicts = []
decoded_audio_input = ""
if isinstance(messages, str):
prompt = messages
else:
messages_dict = {}
system_prompt = ""
prompt = ""
for message in messages:
msg_role = message["role"]
messages_dict = {}
if msg_role == "system":
system_prompt = message["content"]
elif msg_role == "user":
if type(message["content"]) == list:
# separate each media type and store accordingly
text = ""
text_list = [item["text"] for item in message["content"] if item["type"] == "text"]
text += "\n".join(text_list)
image_list = [
item["image_url"]["url"] for item in message["content"] if item["type"] == "image_url"
]
audios = [item["audio"] for item in message["content"] if item["type"] == "audio"]
if audios:
# translate audio to text. From this point forward, audio is treated like text
decoded_audio_input = self.convert_audio_to_text(audios)
b64_types["audio"] = decoded_audio_input
if text and not audios and not image_list:
messages_dict[msg_role] = text
elif audios and not text and not image_list:
messages_dict[msg_role] = decoded_audio_input
else:
messages_dict[msg_role] = (text, decoded_audio_input, image_list)
else:
messages_dict[msg_role] = message["content"]
messages_dicts.append(messages_dict)
elif msg_role == "assistant":
messages_dict[msg_role] = message["content"]
messages_dicts.append(messages_dict)
else:
raise ValueError(f"Unknown role: {msg_role}")
if system_prompt:
prompt = system_prompt + "\n"
for i, messages_dict in enumerate(messages_dicts):
for role, message in messages_dict.items():
if isinstance(message, tuple):
text, decoded_audio_input, image_list = message
if i == 0:
# do not add role for the very first message.
# this will be added by llava_server
if text:
prompt += text + "\n"
elif decoded_audio_input:
prompt += decoded_audio_input + "\n"
else:
if text:
prompt += role.upper() + ": " + text + "\n"
elif decoded_audio_input:
prompt += role.upper() + ": " + decoded_audio_input + "\n"
else:
prompt += role.upper() + ":"
if image_list:
for img in image_list:
# URL
if img.startswith("http://") or img.startswith("https://"):
response = requests.get(img)
image = Image.open(BytesIO(response.content)).convert("RGBA")
image_bytes = BytesIO()
image.save(image_bytes, format="PNG")
img_b64_str = base64.b64encode(image_bytes.getvalue()).decode()
# Local Path
elif os.path.exists(img):
image = Image.open(img).convert("RGBA")
image_bytes = BytesIO()
image.save(image_bytes, format="PNG")
img_b64_str = base64.b64encode(image_bytes.getvalue()).decode()
# Bytes
else:
img_b64_str = img
images.append(img_b64_str)
elif isinstance(message, str):
if i == 0:
# do not add role for the very first message.
# this will be added by llava_server
if message:
prompt += message + "\n"
else:
if message:
prompt += role.upper() + ": " + message + "\n"
else:
prompt += role.upper() + ":"
if images:
b64_types["image"] = images
# If the query has multiple media types, return all types
if prompt and b64_types:
return prompt, b64_types
else:
return prompt
def convert_audio_to_text(self, audio):
# translate audio to text by passing in base64 encoded audio to ASR
if isinstance(audio, dict):
input_dict = {"audio": audio["audio"][0]}
else:
input_dict = {"audio": audio[0]}
response = requests.post(WHISPER_SERVER_ENDPOINT, data=json.dumps(input_dict))
if response.status_code != 200:
return JSONResponse(
status_code=503, content={"message": "Unable to convert audio to text. {}".format(response.text)}
)
response = response.json()
return response["asr_result"]
async def handle_request(self, request: Request):
data = await request.json()
stream_opt = bool(data.get("stream", False))
if stream_opt:
print("[ MultimodalQnAService ] stream=True not used, this has not support stream yet!")
stream_opt = False
chat_request = ChatCompletionRequest.model_validate(data)
# Multimodal RAG QnA With Videos has not yet accepts image as input during QnA.
num_messages = len(data["messages"]) if isinstance(data["messages"], list) else 1
messages = self._handle_message(chat_request.messages)
decoded_audio_input = ""
if num_messages > 1:
# This is a follow up query, go to LVM
cur_megaservice = self.lvm_megaservice
if isinstance(messages, tuple):
prompt, b64_types = messages
if "audio" in b64_types:
# for metadata storage purposes
decoded_audio_input = b64_types["audio"]
if "image" in b64_types:
initial_inputs = {"prompt": prompt, "image": b64_types["image"][0]}
else:
initial_inputs = {"prompt": prompt, "image": ""}
else:
prompt = messages
initial_inputs = {"prompt": prompt, "image": ""}
else:
# This is the first query. Ignore image input
cur_megaservice = self.megaservice
if isinstance(messages, tuple):
prompt, b64_types = messages
if "audio" in b64_types:
# for metadata storage purposes
decoded_audio_input = b64_types["audio"]
else:
prompt = messages
initial_inputs = {"text": prompt}
parameters = LLMParams(
max_new_tokens=chat_request.max_tokens if chat_request.max_tokens else 1024,
top_k=chat_request.top_k if chat_request.top_k else 10,
top_p=chat_request.top_p if chat_request.top_p else 0.95,
temperature=chat_request.temperature if chat_request.temperature else 0.01,
frequency_penalty=chat_request.frequency_penalty if chat_request.frequency_penalty else 0.0,
presence_penalty=chat_request.presence_penalty if chat_request.presence_penalty else 0.0,
repetition_penalty=chat_request.repetition_penalty if chat_request.repetition_penalty else 1.03,
stream=stream_opt,
chat_template=chat_request.chat_template if chat_request.chat_template else None,
)
result_dict, runtime_graph = await cur_megaservice.schedule(
initial_inputs=initial_inputs, llm_parameters=parameters
)
for node, response in result_dict.items():
# the last microservice in this megaservice is LVM.
# checking if LVM returns StreamingResponse
# Currently, LVM with LLAVA has not yet supported stream.
# @TODO: Will need to test this once LVM with LLAVA supports stream
if (
isinstance(response, StreamingResponse)
and node == runtime_graph.all_leaves()[-1]
and self.megaservice.services[node].service_type == ServiceType.LVM
):
return response
last_node = runtime_graph.all_leaves()[-1]
if "text" in result_dict[last_node].keys():
response = result_dict[last_node]["text"]
else:
# text is not in response message
# something wrong, for example due to empty retrieval results
if "detail" in result_dict[last_node].keys():
response = result_dict[last_node]["detail"]
else:
response = "The server failed to generate an answer to your query!"
if "metadata" in result_dict[last_node].keys():
# from retrieval results
metadata = result_dict[last_node]["metadata"]
if decoded_audio_input:
metadata["audio"] = decoded_audio_input
else:
# follow-up question, no retrieval
if decoded_audio_input:
metadata = {"audio": decoded_audio_input}
else:
metadata = None
choices = []
usage = UsageInfo()
choices.append(
ChatCompletionResponseChoice(
index=0,
message=ChatMessage(role="assistant", content=response),
finish_reason="stop",
metadata=metadata,
)
)
return ChatCompletionResponse(model="multimodalqna", choices=choices, usage=usage)
def start(self):
self.service = MicroService(
self.__class__.__name__,
service_role=ServiceRoleType.MEGASERVICE,
host=self.host,
port=self.port,
endpoint=self.endpoint,
input_datatype=ChatCompletionRequest,
output_datatype=ChatCompletionResponse,
)
self.service.add_route(self.endpoint, self.handle_request, methods=["POST"])
self.service.start()
if __name__ == "__main__":
mmragwithvideos = MultimodalQnAService(port=MEGA_SERVICE_PORT)
mmragwithvideos.add_remote_service()
mmragwithvideos.start()