Files
GenAIExamples/ProductivitySuite/tests/test_compose_on_xeon.sh
Letong Han 3c3d0b4d36 [ProductivitySuite] Fix CD Issue (#858)
Signed-off-by: letonghan <letong.han@intel.com>
(cherry picked from commit d55a33dda1)
2024-09-20 16:32:05 +08:00

386 lines
14 KiB
Bash
Executable File

#!/bin/bash
# Copyright (C) 2024 Intel Corporation
# SPDX-License-Identifier: Apache-2.0
set -xe
IMAGE_REPO=${IMAGE_REPO:-"opea"}
IMAGE_TAG=${IMAGE_TAG:-"latest"}
echo "REGISTRY=IMAGE_REPO=${IMAGE_REPO}"
echo "TAG=IMAGE_TAG=${IMAGE_TAG}"
export REGISTRY=${IMAGE_REPO}
export TAG=${IMAGE_TAG}
WORKPATH=$(dirname "$PWD")
LOG_PATH="$WORKPATH/tests"
ip_address=$(hostname -I | awk '{print $1}')
function build_docker_images() {
cd $WORKPATH/docker_image_build
git clone https://github.com/opea-project/GenAIComps.git && cd GenAIComps && git checkout "${opea_branch:-"main"}" && cd ../
echo "Build all the images with --no-cache, check docker_image_build.log for details..."
docker compose -f build.yaml build --no-cache > ${LOG_PATH}/docker_image_build.log
docker pull ghcr.io/huggingface/text-embeddings-inference:cpu-1.5
docker pull ghcr.io/huggingface/text-generation-inference:2.1.0
docker images && sleep 1s
}
function start_services() {
cd $WORKPATH/docker_compose/intel/cpu/xeon/
export EMBEDDING_MODEL_ID="BAAI/bge-base-en-v1.5"
export RERANK_MODEL_ID="BAAI/bge-reranker-base"
export LLM_MODEL_ID="Intel/neural-chat-7b-v3-3"
export LLM_MODEL_ID_CODEGEN="Intel/neural-chat-7b-v3-3"
export TEI_EMBEDDING_ENDPOINT="http://${ip_address}:6006"
export TEI_RERANKING_ENDPOINT="http://${ip_address}:8808"
export TGI_LLM_ENDPOINT="http://${ip_address}:9009"
export REDIS_URL="redis://${ip_address}:6379"
export REDIS_HOST=${ip_address}
export INDEX_NAME="rag-redis"
export HUGGINGFACEHUB_API_TOKEN=${HUGGINGFACEHUB_API_TOKEN}
export MEGA_SERVICE_HOST_IP=${ip_address}
export EMBEDDING_SERVICE_HOST_IP=${ip_address}
export RETRIEVER_SERVICE_HOST_IP=${ip_address}
export RERANK_SERVICE_HOST_IP=${ip_address}
export LLM_SERVICE_HOST_IP=${ip_address}
export LLM_SERVICE_HOST_IP_DOCSUM=${ip_address}
export LLM_SERVICE_HOST_IP_FAQGEN=${ip_address}
export LLM_SERVICE_HOST_IP_CODEGEN=${ip_address}
export LLM_SERVICE_HOST_IP_CHATQNA=${ip_address}
export TGI_LLM_ENDPOINT_CHATQNA="http://${ip_address}:9009"
export TGI_LLM_ENDPOINT_CODEGEN="http://${ip_address}:8028"
export TGI_LLM_ENDPOINT_FAQGEN="http://${ip_address}:9009"
export TGI_LLM_ENDPOINT_DOCSUM="http://${ip_address}:9009"
export BACKEND_SERVICE_ENDPOINT_CHATQNA="http://${ip_address}:8888/v1/chatqna"
export BACKEND_SERVICE_ENDPOINT_FAQGEN="http://${ip_address}:8889/v1/faqgen"
export DATAPREP_DELETE_FILE_ENDPOINT="http://${ip_address}:6009/v1/dataprep/delete_file"
export BACKEND_SERVICE_ENDPOINT_CODEGEN="http://${ip_address}:7778/v1/codegen"
export BACKEND_SERVICE_ENDPOINT_DOCSUM="http://${ip_address}:8890/v1/docsum"
export DATAPREP_SERVICE_ENDPOINT="http://${ip_address}:6007/v1/dataprep"
export DATAPREP_GET_FILE_ENDPOINT="http://${ip_address}:6008/v1/dataprep/get_file"
export CHAT_HISTORY_CREATE_ENDPOINT="http://${ip_address}:6012/v1/chathistory/create"
export CHAT_HISTORY_CREATE_ENDPOINT="http://${ip_address}:6012/v1/chathistory/create"
export CHAT_HISTORY_DELETE_ENDPOINT="http://${ip_address}:6012/v1/chathistory/delete"
export CHAT_HISTORY_GET_ENDPOINT="http://${ip_address}:6012/v1/chathistory/get"
export PROMPT_SERVICE_GET_ENDPOINT="http://${ip_address}:6015/v1/prompt/get"
export PROMPT_SERVICE_CREATE_ENDPOINT="http://${ip_address}:6015/v1/prompt/create"
export KEYCLOAK_SERVICE_ENDPOINT="http://${ip_address}:8080"
export MONGO_HOST=${ip_address}
export MONGO_PORT=27017
export DB_NAME="opea"
export COLLECTION_NAME="Conversations"
export LLM_SERVICE_HOST_PORT_FAQGEN=9002
export LLM_SERVICE_HOST_PORT_CODEGEN=9001
export LLM_SERVICE_HOST_PORT_DOCSUM=9003
export PROMPT_COLLECTION_NAME="prompt"
# Start Docker Containers
docker compose up -d > ${LOG_PATH}/start_services_with_compose.log
n=0
until [[ "$n" -ge 100 ]]; do
docker logs tgi-service > ${LOG_PATH}/tgi_service_start.log
if grep -q Connected ${LOG_PATH}/tgi_service_start.log; then
echo "ChatQnA TGI Service Connected"
break
fi
sleep 5s
n=$((n+1))
done
n=0
until [[ "$n" -ge 100 ]]; do
docker logs tgi_service_codegen > ${LOG_PATH}/tgi_service_codegen_start.log
if grep -q Connected ${LOG_PATH}/tgi_service_codegen_start.log; then
echo "CodeGen TGI Service Connected"
break
fi
sleep 5s
n=$((n+1))
done
}
function validate_service() {
local URL="$1"
local EXPECTED_RESULT="$2"
local SERVICE_NAME="$3"
local DOCKER_NAME="$4"
local INPUT_DATA="$5"
if [[ $SERVICE_NAME == *"dataprep_upload_file"* ]]; then
cd $LOG_PATH
HTTP_RESPONSE=$(curl --silent --write-out "HTTPSTATUS:%{http_code}" -X POST -F 'files=@./dataprep_file.txt' -H 'Content-Type: multipart/form-data' "$URL")
elif [[ $SERVICE_NAME == *"dataprep_upload_link"* ]]; then
HTTP_RESPONSE=$(curl --silent --write-out "HTTPSTATUS:%{http_code}" -X POST -F 'link_list=["https://www.ces.tech/"]' "$URL")
elif [[ $SERVICE_NAME == *"dataprep_get"* ]]; then
HTTP_RESPONSE=$(curl --silent --write-out "HTTPSTATUS:%{http_code}" -X POST -H 'Content-Type: application/json' "$URL")
elif [[ $SERVICE_NAME == *"dataprep_del"* ]]; then
HTTP_RESPONSE=$(curl --silent --write-out "HTTPSTATUS:%{http_code}" -X POST -d '{"file_path": "all"}' -H 'Content-Type: application/json' "$URL")
else
HTTP_RESPONSE=$(curl --silent --write-out "HTTPSTATUS:%{http_code}" -X POST -d "$INPUT_DATA" -H 'Content-Type: application/json' "$URL")
fi
HTTP_STATUS=$(echo $HTTP_RESPONSE | tr -d '\n' | sed -e 's/.*HTTPSTATUS://')
RESPONSE_BODY=$(echo $HTTP_RESPONSE | sed -e 's/HTTPSTATUS\:.*//g')
docker logs ${DOCKER_NAME} >> ${LOG_PATH}/${SERVICE_NAME}.log
# check response status
if [ "$HTTP_STATUS" -ne "200" ]; then
echo "[ $SERVICE_NAME ] HTTP status is not 200. Received status was $HTTP_STATUS"
exit 1
else
echo "[ $SERVICE_NAME ] HTTP status is 200. Checking content..."
fi
# check response body
if [[ "$RESPONSE_BODY" != *"$EXPECTED_RESULT"* ]]; then
echo "[ $SERVICE_NAME ] Content does not match the expected result: $RESPONSE_BODY"
exit 1
else
echo "[ $SERVICE_NAME ] Content is as expected."
fi
sleep 1s
}
function validate_microservices() {
# Check if the microservices are running correctly.
# tei for embedding service
validate_service \
"${ip_address}:6006/embed" \
"[[" \
"tei-embedding" \
"tei-embedding-server" \
'{"inputs":"What is Deep Learning?"}'
# embedding microservice
validate_service \
"${ip_address}:6000/v1/embeddings" \
'"text":"What is Deep Learning?","embedding":[' \
"embedding-microservice" \
"embedding-tei-server" \
'{"text":"What is Deep Learning?"}'
sleep 1m # retrieval can't curl as expected, try to wait for more time
# test /v1/dataprep upload file
echo "Deep learning is a subset of machine learning that utilizes neural networks with multiple layers to analyze various levels of abstract data representations. It enables computers to identify patterns and make decisions with minimal human intervention by learning from large amounts of data." > $LOG_PATH/dataprep_file.txt
validate_service \
"http://${ip_address}:6007/v1/dataprep" \
"Data preparation succeeded" \
"dataprep_upload_file" \
"dataprep-redis-server"
# test /v1/dataprep upload link
validate_service \
"http://${ip_address}:6007/v1/dataprep" \
"Data preparation succeeded" \
"dataprep_upload_link" \
"dataprep-redis-server"
# test /v1/dataprep/get_file
validate_service \
"http://${ip_address}:6007/v1/dataprep/get_file" \
'{"name":' \
"dataprep_get" \
"dataprep-redis-server"
# test /v1/dataprep/delete_file
validate_service \
"http://${ip_address}:6007/v1/dataprep/delete_file" \
'{"status":true}' \
"dataprep_del" \
"dataprep-redis-server"
# retrieval microservice
test_embedding=$(python3 -c "import random; embedding = [random.uniform(-1, 1) for _ in range(768)]; print(embedding)")
validate_service \
"${ip_address}:7000/v1/retrieval" \
"retrieved_docs" \
"retrieval-microservice" \
"retriever-redis-server" \
"{\"text\":\"What is the revenue of Nike in 2023?\",\"embedding\":${test_embedding}}"
# tei for rerank microservice
validate_service \
"${ip_address}:8808/rerank" \
'{"index":1,"score":' \
"tei-rerank" \
"tei-reranking-server" \
'{"query":"What is Deep Learning?", "texts": ["Deep Learning is not...", "Deep learning is..."]}'
# rerank microservice
validate_service \
"${ip_address}:8000/v1/reranking" \
"Deep learning is..." \
"rerank-microservice" \
"reranking-tei-xeon-server" \
'{"initial_query":"What is Deep Learning?", "retrieved_docs": [{"text":"Deep Learning is not..."}, {"text":"Deep learning is..."}]}'
# tgi for llm service
validate_service \
"${ip_address}:9009/generate" \
"generated_text" \
"tgi-llm" \
"tgi-service" \
'{"inputs":"What is Deep Learning?","parameters":{"max_new_tokens":17, "do_sample": true}}'
# ChatQnA llm microservice
validate_service \
"${ip_address}:9000/v1/chat/completions" \
"data: " \
"llm-microservice" \
"llm-tgi-server" \
'{"query":"What is Deep Learning?"}'
# FAQGen llm microservice
validate_service \
"${ip_address}:9002/v1/faqgen" \
"data: " \
"llm_faqgen" \
"llm-faqgen-server" \
'{"query":"Text Embeddings Inference (TEI) is a toolkit for deploying and serving open source text embeddings and sequence classification models. TEI enables high-performance extraction for the most popular models, including FlagEmbedding, Ember, GTE and E5."}'
# Docsum llm microservice
validate_service \
"${ip_address}:9003/v1/chat/docsum" \
"data: " \
"llm_docsum" \
"llm-docsum-server" \
'{"query":"Text Embeddings Inference (TEI) is a toolkit for deploying and serving open source text embeddings and sequence classification models. TEI enables high-performance extraction for the most popular models, including FlagEmbedding, Ember, GTE and E5."}'
# CodeGen llm microservice
validate_service \
"${ip_address}:9001/v1/chat/completions" \
"data: " \
"llm_codegen" \
"llm-tgi-server-codegen" \
'{"query":"def print_hello_world():"}'
result=$(curl -X 'POST' \
http://${ip_address}:6012/v1/chathistory/create \
-H 'accept: application/json' \
-H 'Content-Type: application/json' \
-d '{
"data": {
"messages": "test Messages", "user": "test"
}
}')
echo $result
if [[ ${#result} -eq 26 ]]; then
echo "Correct result."
else
echo "Incorrect result."
exit 1
fi
result=$(curl -X 'POST' \
http://$ip_address:6015/v1/prompt/create \
-H 'accept: application/json' \
-H 'Content-Type: application/json' \
-d '{
"prompt_text": "test prompt", "user": "test"
}')
echo $result
if [[ ${#result} -eq 26 ]]; then
echo "Correct result."
else
echo "Incorrect result."
exit 1
fi
}
function validate_megaservice() {
# Curl the ChatQnAMega Service
validate_service \
"${ip_address}:8888/v1/chatqna" \
"data: " \
"chatqna-megaservice" \
"chatqna-xeon-backend-server" \
'{"messages": "What is the revenue of Nike in 2023?"}'\
# Curl the FAQGen Service
validate_service \
"${ip_address}:8889/v1/faqgen" \
"Text Embeddings Inference" \
"faqgen-xeon-backend-server" \
"faqgen-xeon-backend-server" \
'{"messages": "Text Embeddings Inference (TEI) is a toolkit for deploying and serving open source text embeddings and sequence classification models. TEI enables high-performance extraction for the most popular models, including FlagEmbedding, Ember, GTE and E5."}'\
# Curl the DocSum Mega Service
validate_service \
"${ip_address}:8890/v1/docsum" \
"toolkit" \
"docsum-xeon-backend-server" \
"docsum-xeon-backend-server" \
'{"messages": "Text Embeddings Inference (TEI) is a toolkit for deploying and serving open source text embeddings and sequence classification models. TEI enables high-performance extraction for the most popular models, including FlagEmbedding, Ember, GTE and E5."}'
# Curl the CodeGen Mega Service
validate_service \
"${ip_address}:7778/v1/codegen" \
"print" \
"codegen-xeon-backend-server" \
"codegen-xeon-backend-server" \
'{"messages": "def print_hello_world():"}'
}
function validate_frontend() {
echo "[ TEST INFO ]: --------- frontend test started ---------"
cd $WORKPATH/ui/react
local conda_env_name="OPEA_e2e"
export PATH=${HOME}/miniforge3/bin/:$PATH
# conda remove -n ${conda_env_name} --all -y
# conda create -n ${conda_env_name} python=3.12 -y
source activate ${conda_env_name}
echo "[ TEST INFO ]: --------- conda env activated ---------"
# conda install -c conda-forge nodejs -y
npm install && npm ci
node -v && npm -v && pip list
exit_status=0
npm run test || exit_status=$?
if [ $exit_status -ne 0 ]; then
echo "[TEST INFO]: ---------frontend test failed---------"
exit $exit_status
else
echo "[TEST INFO]: ---------frontend test passed---------"
fi
}
function stop_docker() {
cd $WORKPATH/docker_compose/intel/cpu/xeon/
docker compose stop && docker compose rm -f
}
function main() {
stop_docker
if [[ "$IMAGE_REPO" == "opea" ]]; then build_docker_images; fi
start_time=$(date +%s)
start_services
end_time=$(date +%s)
duration=$((end_time-start_time))
echo "Mega service start duration is $duration s" && sleep 1s
validate_microservices
echo "==== microservices validated ===="
validate_megaservice
echo "==== megaservices validated ===="
validate_frontend
echo "==== frontend validated ===="
stop_docker
echo y | docker system prune
}
main