Files
GenAIExamples/FaqGen/faqgen.py

175 lines
6.3 KiB
Python

# Copyright (C) 2024 Intel Corporation
# SPDX-License-Identifier: Apache-2.0
import asyncio
import os
from typing import List
from comps import MegaServiceEndpoint, MicroService, ServiceOrchestrator, ServiceRoleType, ServiceType
from comps.cores.mega.utils import handle_message
from comps.cores.proto.api_protocol import (
ChatCompletionRequest,
ChatCompletionResponse,
ChatCompletionResponseChoice,
ChatMessage,
UsageInfo,
)
from comps.cores.proto.docarray import LLMParams
from fastapi import File, Request, UploadFile
from fastapi.responses import StreamingResponse
MEGA_SERVICE_PORT = int(os.getenv("MEGA_SERVICE_PORT", 8888))
LLM_SERVICE_HOST_IP = os.getenv("LLM_SERVICE_HOST_IP", "0.0.0.0")
LLM_SERVICE_PORT = int(os.getenv("LLM_SERVICE_PORT", 9000))
def read_pdf(file):
from langchain.document_loaders import PyPDFLoader
loader = PyPDFLoader(file)
docs = loader.load_and_split()
return docs
def read_text_from_file(file, save_file_name):
import docx2txt
from langchain.text_splitter import CharacterTextSplitter
# read text file
if file.headers["content-type"] == "text/plain":
file.file.seek(0)
content = file.file.read().decode("utf-8")
# Split text
text_splitter = CharacterTextSplitter()
texts = text_splitter.split_text(content)
# Create multiple documents
file_content = texts
# read pdf file
elif file.headers["content-type"] == "application/pdf":
documents = read_pdf(save_file_name)
file_content = [doc.page_content for doc in documents]
# read docx file
elif (
file.headers["content-type"] == "application/vnd.openxmlformats-officedocument.wordprocessingml.document"
or file.headers["content-type"] == "application/octet-stream"
):
file_content = docx2txt.process(save_file_name)
return file_content
def align_inputs(self, inputs, cur_node, runtime_graph, llm_parameters_dict, **kwargs):
if self.services[cur_node].service_type == ServiceType.LLM:
for key_to_replace in ["text"]:
if key_to_replace in inputs:
inputs["messages"] = inputs[key_to_replace]
del inputs[key_to_replace]
if "id" in inputs:
del inputs["id"]
if "max_new_tokens" in inputs:
del inputs["max_new_tokens"]
if "input" in inputs:
del inputs["input"]
return inputs
class FaqGenService:
def __init__(self, host="0.0.0.0", port=8000):
self.host = host
self.port = port
ServiceOrchestrator.align_inputs = align_inputs
self.megaservice = ServiceOrchestrator()
self.endpoint = str(MegaServiceEndpoint.FAQ_GEN)
def add_remote_service(self):
llm = MicroService(
name="llm",
host=LLM_SERVICE_HOST_IP,
port=LLM_SERVICE_PORT,
endpoint="/v1/faqgen",
use_remote_service=True,
service_type=ServiceType.LLM,
)
self.megaservice.add(llm)
async def handle_request(self, request: Request, files: List[UploadFile] = File(default=None)):
data = await request.form()
stream_opt = data.get("stream", True)
chat_request = ChatCompletionRequest.parse_obj(data)
file_summaries = []
if files:
for file in files:
file_path = f"/tmp/{file.filename}"
import aiofiles
async with aiofiles.open(file_path, "wb") as f:
await f.write(await file.read())
docs = read_text_from_file(file, file_path)
os.remove(file_path)
if isinstance(docs, list):
file_summaries.extend(docs)
else:
file_summaries.append(docs)
if file_summaries:
prompt = handle_message(chat_request.messages) + "\n".join(file_summaries)
else:
prompt = handle_message(chat_request.messages)
parameters = LLMParams(
max_tokens=chat_request.max_tokens if chat_request.max_tokens else 1024,
top_k=chat_request.top_k if chat_request.top_k else 10,
top_p=chat_request.top_p if chat_request.top_p else 0.95,
temperature=chat_request.temperature if chat_request.temperature else 0.01,
frequency_penalty=chat_request.frequency_penalty if chat_request.frequency_penalty else 0.0,
presence_penalty=chat_request.presence_penalty if chat_request.presence_penalty else 0.0,
repetition_penalty=chat_request.repetition_penalty if chat_request.repetition_penalty else 1.03,
stream=stream_opt,
model=chat_request.model if chat_request.model else None,
)
result_dict, runtime_graph = await self.megaservice.schedule(
initial_inputs={"messages": prompt}, llm_parameters=parameters
)
for node, response in result_dict.items():
# Here it suppose the last microservice in the megaservice is LLM.
if (
isinstance(response, StreamingResponse)
and node == list(self.megaservice.services.keys())[-1]
and self.megaservice.services[node].service_type == ServiceType.LLM
):
return response
last_node = runtime_graph.all_leaves()[-1]
response = result_dict[last_node]["text"]
choices = []
usage = UsageInfo()
choices.append(
ChatCompletionResponseChoice(
index=0,
message=ChatMessage(role="assistant", content=response),
finish_reason="stop",
)
)
return ChatCompletionResponse(model="faqgen", choices=choices, usage=usage)
def start(self):
self.service = MicroService(
self.__class__.__name__,
service_role=ServiceRoleType.MEGASERVICE,
host=self.host,
port=self.port,
endpoint=self.endpoint,
input_datatype=ChatCompletionRequest,
output_datatype=ChatCompletionResponse,
)
self.service.add_route(self.endpoint, self.handle_request, methods=["POST"])
self.service.start()
if __name__ == "__main__":
faqgen = FaqGenService(port=MEGA_SERVICE_PORT)
faqgen.add_remote_service()
faqgen.start()