Files
GenAIExamples/DocSum/docsum.py
2025-05-08 09:05:30 +08:00

319 lines
11 KiB
Python

# Copyright (C) 2024 Intel Corporation
# SPDX-License-Identifier: Apache-2.0
import asyncio
import base64
import os
import subprocess
import uuid
from typing import List
from comps import MegaServiceEndpoint, MicroService, ServiceOrchestrator, ServiceRoleType, ServiceType
from comps.cores.mega.utils import handle_message
from comps.cores.proto.api_protocol import (
ChatCompletionRequest,
ChatCompletionResponse,
ChatCompletionResponseChoice,
ChatMessage,
DocSumChatCompletionRequest,
UsageInfo,
)
from fastapi import File, Request, UploadFile
from fastapi.responses import StreamingResponse
MEGA_SERVICE_PORT = int(os.getenv("MEGA_SERVICE_PORT", 8888))
ASR_SERVICE_HOST_IP = os.getenv("ASR_SERVICE_HOST_IP", "0.0.0.0")
ASR_SERVICE_PORT = int(os.getenv("ASR_SERVICE_PORT", 7066))
LLM_SERVICE_HOST_IP = os.getenv("LLM_SERVICE_HOST_IP", "0.0.0.0")
LLM_SERVICE_PORT = int(os.getenv("LLM_SERVICE_PORT", 9000))
def align_inputs(self, inputs, cur_node, runtime_graph, llm_parameters_dict, **kwargs):
if self.services[cur_node].service_type == ServiceType.LLM:
for key_to_replace in ["text", "asr_result"]:
if key_to_replace in inputs:
inputs["messages"] = inputs[key_to_replace]
del inputs[key_to_replace]
docsum_parameters = kwargs.get("docsum_parameters", None)
if docsum_parameters:
docsum_parameters = docsum_parameters.model_dump()
del docsum_parameters["messages"]
inputs.update(docsum_parameters)
if "id" in inputs:
del inputs["id"]
if "max_new_tokens" in inputs:
del inputs["max_new_tokens"]
if "input" in inputs:
del inputs["input"]
elif self.services[cur_node].service_type == ServiceType.ASR:
if "video" in inputs:
audio_base64 = video2audio(inputs["video"])
inputs["audio"] = audio_base64
return inputs
def read_pdf(file):
from langchain.document_loaders import PyPDFLoader
loader = PyPDFLoader(file)
docs = loader.load_and_split()
return docs
def encode_file_to_base64(file_path):
"""Encode the content of a file to a base64 string.
Args:
file_path (str): The path to the file to be encoded.
Returns:
str: The base64 encoded string of the file content.
"""
with open(file_path, "rb") as f:
base64_str = base64.b64encode(f.read()).decode("utf-8")
return base64_str
def video2audio(
video_base64: str,
) -> str:
"""Convert a base64 video string to a base64 audio string using ffmpeg.
Args:
video_base64 (str): Base64 encoded video string.
Returns:
str: Base64 encoded audio string.
"""
video_data = base64.b64decode(video_base64)
uid = str(uuid.uuid4())
temp_video_path = f"{uid}.mp4"
temp_audio_path = f"{uid}.mp3"
with open(temp_video_path, "wb") as video_file:
video_file.write(video_data)
try:
subprocess.run(
["ffmpeg", "-i", temp_video_path, "-q:a", "0", "-map", "a", temp_audio_path],
check=True,
stdout=subprocess.DEVNULL,
stderr=subprocess.STDOUT,
)
# Read the extracted audio file and encode it to base64
with open(temp_audio_path, "rb") as audio_file:
audio_base64 = base64.b64encode(audio_file.read()).decode("utf-8")
finally:
# Clean up the temporary video file
os.remove(temp_video_path)
os.remove(temp_audio_path)
return audio_base64
def read_text_from_file(file, save_file_name):
import docx2txt
from langchain.text_splitter import CharacterTextSplitter
# read text file
if file.headers["content-type"] == "text/plain":
file.file.seek(0)
content = file.file.read().decode("utf-8")
# Split text
text_splitter = CharacterTextSplitter()
texts = text_splitter.split_text(content)
# Create multiple documents
file_content = texts
# read pdf file
elif file.headers["content-type"] == "application/pdf":
documents = read_pdf(save_file_name)
file_content = [doc.page_content for doc in documents]
# read docx file
elif (
file.headers["content-type"] == "application/vnd.openxmlformats-officedocument.wordprocessingml.document"
or file.headers["content-type"] == "application/octet-stream"
):
file_content = docx2txt.process(save_file_name)
return file_content
class DocSumService:
def __init__(self, host="0.0.0.0", port=8000):
self.host = host
self.port = port
ServiceOrchestrator.align_inputs = align_inputs
self.megaservice = ServiceOrchestrator()
self.megaservice_text_only = ServiceOrchestrator()
self.endpoint = str(MegaServiceEndpoint.DOC_SUMMARY)
def add_remote_service(self):
asr = MicroService(
name="asr",
host=ASR_SERVICE_HOST_IP,
port=ASR_SERVICE_PORT,
endpoint="/v1/asr",
use_remote_service=True,
service_type=ServiceType.ASR,
)
llm = MicroService(
name="llm",
host=LLM_SERVICE_HOST_IP,
port=LLM_SERVICE_PORT,
endpoint="/v1/docsum",
use_remote_service=True,
service_type=ServiceType.LLM,
)
self.megaservice.add(asr).add(llm)
self.megaservice.flow_to(asr, llm)
self.megaservice_text_only.add(llm)
async def handle_request(self, request: Request, files: List[UploadFile] = File(default=None)):
"""Accept pure text, or files .txt/.pdf.docx, audio/video base64 string."""
if "application/json" in request.headers.get("content-type"):
data = await request.json()
stream_opt = data.get("stream", True)
summary_type = data.get("summary_type", "auto")
chunk_size = data.get("chunk_size", -1)
chunk_overlap = data.get("chunk_overlap", -1)
chat_request = ChatCompletionRequest.model_validate(data)
prompt = handle_message(chat_request.messages)
initial_inputs_data = {data["type"]: prompt}
elif "multipart/form-data" in request.headers.get("content-type"):
data = await request.form()
stream_opt = data.get("stream", True)
summary_type = data.get("summary_type", "auto")
chunk_size = data.get("chunk_size", -1)
chunk_overlap = data.get("chunk_overlap", -1)
chat_request = ChatCompletionRequest.model_validate(data)
data_type = data.get("type")
file_summaries = []
if files:
for file in files:
# Fix concurrency issue with the same file name
# https://github.com/opea-project/GenAIExamples/issues/1279
uid = str(uuid.uuid4())
file_path = f"/tmp/{uid}"
import aiofiles
async with aiofiles.open(file_path, "wb") as f:
await f.write(await file.read())
if data_type == "text":
docs = read_text_from_file(file, file_path)
elif data_type in ["audio", "video"]:
docs = encode_file_to_base64(file_path)
else:
raise ValueError(f"Data type not recognized: {data_type}")
os.remove(file_path)
if isinstance(docs, list):
file_summaries.extend(docs)
else:
file_summaries.append(docs)
if file_summaries:
prompt = handle_message(chat_request.messages) + "\n".join(file_summaries)
else:
prompt = handle_message(chat_request.messages)
data_type = data.get("type")
if data_type is not None:
initial_inputs_data = {}
initial_inputs_data[data_type] = prompt
else:
initial_inputs_data = {"messages": prompt}
else:
raise ValueError(f"Unknown request type: {request.headers.get('content-type')}")
docsum_parameters = DocSumChatCompletionRequest(
messages="",
max_tokens=chat_request.max_tokens if chat_request.max_tokens else 1024,
top_k=chat_request.top_k if chat_request.top_k else 10,
top_p=chat_request.top_p if chat_request.top_p else 0.95,
temperature=chat_request.temperature if chat_request.temperature else 0.01,
frequency_penalty=chat_request.frequency_penalty if chat_request.frequency_penalty else 0.0,
presence_penalty=chat_request.presence_penalty if chat_request.presence_penalty else 0.0,
repetition_penalty=chat_request.repetition_penalty if chat_request.repetition_penalty else 1.03,
stream=stream_opt,
model=chat_request.model if chat_request.model else None,
language=chat_request.language if chat_request.language else "auto",
summary_type=summary_type,
chunk_overlap=chunk_overlap,
chunk_size=chunk_size,
)
text_only = "text" in initial_inputs_data
if not text_only:
result_dict, runtime_graph = await self.megaservice.schedule(
initial_inputs=initial_inputs_data, docsum_parameters=docsum_parameters
)
for node, response in result_dict.items():
# Here it suppose the last microservice in the megaservice is LLM.
if (
isinstance(response, StreamingResponse)
and node == list(self.megaservice.services.keys())[-1]
and self.megaservice.services[node].service_type == ServiceType.LLM
):
return response
else:
result_dict, runtime_graph = await self.megaservice_text_only.schedule(
initial_inputs=initial_inputs_data, docsum_parameters=docsum_parameters
)
for node, response in result_dict.items():
# Here it suppose the last microservice in the megaservice is LLM.
if (
isinstance(response, StreamingResponse)
and node == list(self.megaservice.services.keys())[-1]
and self.megaservice.services[node].service_type == ServiceType.LLM
):
return response
last_node = runtime_graph.all_leaves()[-1]
response = result_dict[last_node]["text"]
choices = []
usage = UsageInfo()
choices.append(
ChatCompletionResponseChoice(
index=0,
message=ChatMessage(role="assistant", content=response),
finish_reason="stop",
)
)
return ChatCompletionResponse(model="docsum", choices=choices, usage=usage)
def start(self):
self.service = MicroService(
self.__class__.__name__,
service_role=ServiceRoleType.MEGASERVICE,
host=self.host,
port=self.port,
endpoint=self.endpoint,
input_datatype=ChatCompletionRequest,
output_datatype=ChatCompletionResponse,
)
self.service.add_route(self.endpoint, self.handle_request, methods=["POST"])
self.service.start()
if __name__ == "__main__":
docsum = DocSumService(port=MEGA_SERVICE_PORT)
docsum.add_remote_service()
docsum.start()