Files
GenAIExamples/AvatarChatbot/avatarchatbot.py
2025-01-06 13:25:55 +08:00

162 lines
6.3 KiB
Python

# Copyright (C) 2024 Intel Corporation
# SPDX-License-Identifier: Apache-2.0
import asyncio
import os
import sys
from comps import MegaServiceEndpoint, MicroService, ServiceOrchestrator, ServiceRoleType, ServiceType
from comps.cores.proto.api_protocol import AudioChatCompletionRequest, ChatCompletionResponse
from comps.cores.proto.docarray import LLMParams
from fastapi import Request
MEGA_SERVICE_PORT = int(os.getenv("MEGA_SERVICE_PORT", 8888))
WHISPER_SERVER_HOST_IP = os.getenv("WHISPER_SERVER_HOST_IP", "0.0.0.0")
WHISPER_SERVER_PORT = int(os.getenv("WHISPER_SERVER_PORT", 7066))
LLM_SERVER_HOST_IP = os.getenv("LLM_SERVER_HOST_IP", "0.0.0.0")
LLM_SERVER_PORT = int(os.getenv("LLM_SERVER_PORT", 3006))
SPEECHT5_SERVER_HOST_IP = os.getenv("SPEECHT5_SERVER_HOST_IP", "0.0.0.0")
SPEECHT5_SERVER_PORT = int(os.getenv("SPEECHT5_SERVER_PORT", 7055))
ANIMATION_SERVICE_HOST_IP = os.getenv("ANIMATION_SERVICE_HOST_IP", "0.0.0.0")
ANIMATION_SERVICE_PORT = int(os.getenv("ANIMATION_SERVICE_PORT", 9066))
def align_inputs(self, inputs, cur_node, runtime_graph, llm_parameters_dict, **kwargs):
if self.services[cur_node].service_type == ServiceType.LLM:
# convert TGI/vLLM to unified OpenAI /v1/chat/completions format
next_inputs = {}
next_inputs["model"] = "tgi" # specifically clarify the fake model to make the format unified
next_inputs["messages"] = [{"role": "user", "content": inputs["asr_result"]}]
next_inputs["max_tokens"] = llm_parameters_dict["max_tokens"]
next_inputs["top_p"] = llm_parameters_dict["top_p"]
next_inputs["stream"] = inputs["stream"] # False as default
next_inputs["frequency_penalty"] = inputs["frequency_penalty"]
# next_inputs["presence_penalty"] = inputs["presence_penalty"]
# next_inputs["repetition_penalty"] = inputs["repetition_penalty"]
next_inputs["temperature"] = inputs["temperature"]
inputs = next_inputs
elif self.services[cur_node].service_type == ServiceType.TTS:
next_inputs = {}
next_inputs["text"] = inputs["choices"][0]["message"]["content"]
next_inputs["voice"] = kwargs["voice"]
inputs = next_inputs
elif self.services[cur_node].service_type == ServiceType.ANIMATION:
next_inputs = {}
next_inputs["byte_str"] = inputs["tts_result"]
inputs = next_inputs
return inputs
def check_env_vars(env_var_list):
for var in env_var_list:
if os.getenv(var) is None:
print(f"Error: The environment variable '{var}' is not set.")
sys.exit(1) # Exit the program with a non-zero status code
print("All environment variables are set.")
class AvatarChatbotService:
def __init__(self, host="0.0.0.0", port=8000):
self.host = host
self.port = port
ServiceOrchestrator.align_inputs = align_inputs
self.megaservice = ServiceOrchestrator()
self.endpoint = str(MegaServiceEndpoint.AVATAR_CHATBOT)
def add_remote_service(self):
asr = MicroService(
name="asr",
host=WHISPER_SERVER_HOST_IP,
port=WHISPER_SERVER_PORT,
endpoint="/v1/asr",
use_remote_service=True,
service_type=ServiceType.ASR,
)
llm = MicroService(
name="llm",
host=LLM_SERVER_HOST_IP,
port=LLM_SERVER_PORT,
endpoint="/v1/chat/completions",
use_remote_service=True,
service_type=ServiceType.LLM,
)
tts = MicroService(
name="tts",
host=SPEECHT5_SERVER_HOST_IP,
port=SPEECHT5_SERVER_PORT,
endpoint="/v1/tts",
use_remote_service=True,
service_type=ServiceType.TTS,
)
animation = MicroService(
name="animation",
host=ANIMATION_SERVICE_HOST_IP,
port=ANIMATION_SERVICE_PORT,
endpoint="/v1/animation",
use_remote_service=True,
service_type=ServiceType.ANIMATION,
)
self.megaservice.add(asr).add(llm).add(tts).add(animation)
self.megaservice.flow_to(asr, llm)
self.megaservice.flow_to(llm, tts)
self.megaservice.flow_to(tts, animation)
async def handle_request(self, request: Request):
data = await request.json()
chat_request = AudioChatCompletionRequest.model_validate(data)
parameters = LLMParams(
# relatively lower max_tokens for audio conversation
max_tokens=chat_request.max_tokens if chat_request.max_tokens else 128,
top_k=chat_request.top_k if chat_request.top_k else 10,
top_p=chat_request.top_p if chat_request.top_p else 0.95,
temperature=chat_request.temperature if chat_request.temperature else 0.01,
repetition_penalty=chat_request.presence_penalty if chat_request.presence_penalty else 1.03,
stream=False, # TODO add stream LLM output as input to TTS
)
# print(parameters)
result_dict, runtime_graph = await self.megaservice.schedule(
initial_inputs={"audio": chat_request.audio},
llm_parameters=parameters,
voice=chat_request.voice if hasattr(chat_request, "voice") else "default",
)
last_node = runtime_graph.all_leaves()[-1]
response = result_dict[last_node]["video_path"]
return response
def start(self):
self.service = MicroService(
self.__class__.__name__,
service_role=ServiceRoleType.MEGASERVICE,
host=self.host,
port=self.port,
endpoint=self.endpoint,
input_datatype=AudioChatCompletionRequest,
output_datatype=ChatCompletionResponse,
)
self.service.add_route(self.endpoint, self.handle_request, methods=["POST"])
self.service.start()
if __name__ == "__main__":
check_env_vars(
[
"MEGA_SERVICE_HOST_IP",
"MEGA_SERVICE_PORT",
"WHISPER_SERVER_HOST_IP",
"WHISPER_SERVER_PORT",
"LLM_SERVER_HOST_IP",
"LLM_SERVER_PORT",
"SPEECHT5_SERVER_HOST_IP",
"SPEECHT5_SERVER_PORT",
"ANIMATION_SERVICE_HOST_IP",
"ANIMATION_SERVICE_PORT",
]
)
avatarchatbot = AvatarChatbotService(port=MEGA_SERVICE_PORT)
avatarchatbot.add_remote_service()
avatarchatbot.start()