Signed-off-by: Tian, Feng <feng.tian@intel.com> Signed-off-by: chensuyue <suyue.chen@intel.com>
87 lines
3.3 KiB
Python
87 lines
3.3 KiB
Python
# Copyright (c) 2024 Intel Corporation
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
|
|
import asyncio
|
|
import os
|
|
|
|
from comps import ChatQnAGateway, MicroService, ServiceOrchestrator, ServiceType
|
|
|
|
MEGA_SERVICE_HOST_IP = os.getenv("MEGA_SERVICE_HOST_IP", "0.0.0.0")
|
|
MEGA_SERVICE_PORT = os.getenv("MEGA_SERVICE_PORT", 8888)
|
|
EMBEDDING_SERVICE_HOST_IP = os.getenv("EMBEDDING_SERVICE_HOST_IP", "0.0.0.0")
|
|
EMBEDDING_SERVICE_PORT = os.getenv("EMBEDDING_SERVICE_PORT", 6000)
|
|
RETRIEVER_SERVICE_HOST_IP = os.getenv("RETRIEVER_SERVICE_HOST_IP", "0.0.0.0")
|
|
RETRIEVER_SERVICE_PORT = os.getenv("RETRIEVER_SERVICE_PORT", 7000)
|
|
RERANK_SERVICE_HOST_IP = os.getenv("RERANK_SERVICE_HOST_IP", "0.0.0.0")
|
|
RERANK_SERVICE_PORT = os.getenv("RERANK_SERVICE_PORT", 8000)
|
|
LLM_SERVICE_HOST_IP = os.getenv("LLM_SERVICE_HOST_IP", "0.0.0.0")
|
|
LLM_SERVICE_PORT = os.getenv("LLM_SERVICE_PORT", 9000)
|
|
|
|
|
|
class ChatQnAService:
|
|
def __init__(self, host="0.0.0.0", port=8000):
|
|
self.host = host
|
|
self.port = port
|
|
self.megaservice = ServiceOrchestrator()
|
|
|
|
def add_remote_service(self):
|
|
embedding = MicroService(
|
|
name="embedding",
|
|
host=EMBEDDING_SERVICE_HOST_IP,
|
|
port=EMBEDDING_SERVICE_PORT,
|
|
endpoint="/v1/embeddings",
|
|
use_remote_service=True,
|
|
service_type=ServiceType.EMBEDDING,
|
|
)
|
|
retriever = MicroService(
|
|
name="retriever",
|
|
host=RETRIEVER_SERVICE_HOST_IP,
|
|
port=RETRIEVER_SERVICE_PORT,
|
|
endpoint="/v1/retrieval",
|
|
use_remote_service=True,
|
|
service_type=ServiceType.RETRIEVER,
|
|
)
|
|
rerank = MicroService(
|
|
name="rerank",
|
|
host=RERANK_SERVICE_HOST_IP,
|
|
port=RERANK_SERVICE_PORT,
|
|
endpoint="/v1/reranking",
|
|
use_remote_service=True,
|
|
service_type=ServiceType.RERANK,
|
|
)
|
|
llm = MicroService(
|
|
name="llm",
|
|
host=LLM_SERVICE_HOST_IP,
|
|
port=LLM_SERVICE_PORT,
|
|
endpoint="/v1/chat/completions",
|
|
use_remote_service=True,
|
|
service_type=ServiceType.LLM,
|
|
)
|
|
self.megaservice.add(embedding).add(retriever).add(rerank).add(llm)
|
|
self.megaservice.flow_to(embedding, retriever)
|
|
self.megaservice.flow_to(retriever, rerank)
|
|
self.megaservice.flow_to(rerank, llm)
|
|
self.gateway = ChatQnAGateway(megaservice=self.megaservice, host="0.0.0.0", port=self.port)
|
|
|
|
async def schedule(self):
|
|
await self.megaservice.schedule(initial_inputs={"text": "What is the revenue of Nike in 2023?"})
|
|
result_dict = self.megaservice.result_dict
|
|
print(result_dict)
|
|
|
|
|
|
if __name__ == "__main__":
|
|
chatqna = ChatQnAService(host=MEGA_SERVICE_HOST_IP, port=MEGA_SERVICE_PORT)
|
|
chatqna.add_remote_service()
|
|
asyncio.run(chatqna.schedule())
|