Files
GenAIExamples/FaqGen/benchmark/accuracy/README.md
lkk 088ab98f31 update examples accuracy (#941)
Co-authored-by: pre-commit-ci[bot] <66853113+pre-commit-ci[bot]@users.noreply.github.com>
2024-10-14 13:20:50 +08:00

1.8 KiB

FaqGen Accuracy

Dataset

We evaluate performance on QA dataset Squad_v2. Generate FAQs on "context" columns in validation dataset, which contains 1204 unique records.

First download dataset and put at "./data".

Extract unique "context" columns, which will be save to 'data/sqv2_context.json':

python get_context.py

Generate FAQs

Launch FaQGen microservice

Please refer to FaQGen microservice, set up an microservice endpoint.

export FAQ_ENDPOINT = "http://${your_ip}:9000/v1/faqgen"

Generate FAQs with microservice

Use the microservice endpoint to generate FAQs for dataset.

python generate_FAQ.py

Post-process the output to get the right data, which will be save to 'data/sqv2_faq.json'.

python post_process_FAQ.py

Evaluate with Ragas

Launch TGI service

We use "mistralai/Mixtral-8x7B-Instruct-v0.1" as LLM referee to evaluate the model. First we need to launch a LLM endpoint on Gaudi.

export HUGGING_FACE_HUB_TOKEN="your_huggingface_token"
bash launch_tgi.sh

Get the endpoint:

export LLM_ENDPOINT = "http://${ip_address}:8082"

Verify the service:

curl http://${ip_address}:8082/generate \
    -X POST \
    -d '{"inputs":"What is Deep Learning?","parameters":{"max_new_tokens":128}}' \
    -H 'Content-Type: application/json'

Evaluate

evaluate the performance with the LLM:

python evaluate.py

Performance Result

Here is the tested result for your reference

answer_relevancy faithfulness context_utilization reference_free_rubrics_score
0.7191 0.9681 0.8964 4.4125