Files
GenAIExamples/DocSum/docsum.py
Mustafa 07e47a1f38 Update tests for issue 1229 (#1231)
Signed-off-by: Mustafa <mustafa.cetin@intel.com>
Co-authored-by: pre-commit-ci[bot] <66853113+pre-commit-ci[bot]@users.noreply.github.com>
2024-12-07 09:07:52 +08:00

168 lines
6.2 KiB
Python

# Copyright (C) 2024 Intel Corporation
# SPDX-License-Identifier: Apache-2.0
import asyncio
import os
from typing import List
from comps import Gateway, MegaServiceEndpoint, MicroService, ServiceOrchestrator, ServiceType
from comps.cores.mega.gateway import read_text_from_file
from comps.cores.proto.api_protocol import (
ChatCompletionRequest,
ChatCompletionResponse,
ChatCompletionResponseChoice,
ChatMessage,
UsageInfo,
)
from comps.cores.proto.docarray import LLMParams
from fastapi import File, Request, UploadFile
from fastapi.responses import StreamingResponse
MEGA_SERVICE_PORT = int(os.getenv("MEGA_SERVICE_PORT", 8888))
DATA_SERVICE_HOST_IP = os.getenv("DATA_SERVICE_HOST_IP", "0.0.0.0")
DATA_SERVICE_PORT = int(os.getenv("DATA_SERVICE_PORT", 7079))
LLM_SERVICE_HOST_IP = os.getenv("LLM_SERVICE_HOST_IP", "0.0.0.0")
LLM_SERVICE_PORT = int(os.getenv("LLM_SERVICE_PORT", 9000))
class DocSumService(Gateway):
def __init__(self, host="0.0.0.0", port=8000):
self.host = host
self.port = port
self.megaservice = ServiceOrchestrator()
def add_remote_service(self):
data = MicroService(
name="multimedia2text",
host=DATA_SERVICE_HOST_IP,
port=DATA_SERVICE_PORT,
endpoint="/v1/multimedia2text",
use_remote_service=True,
service_type=ServiceType.DATAPREP,
)
llm = MicroService(
name="llm",
host=LLM_SERVICE_HOST_IP,
port=LLM_SERVICE_PORT,
endpoint="/v1/chat/docsum",
use_remote_service=True,
service_type=ServiceType.LLM,
)
self.megaservice.add(data).add(llm)
self.megaservice.flow_to(data, llm)
async def handle_request(self, request: Request, files: List[UploadFile] = File(default=None)):
if "application/json" in request.headers.get("content-type"):
data = await request.json()
stream_opt = data.get("stream", True)
chat_request = ChatCompletionRequest.model_validate(data)
prompt = self._handle_message(chat_request.messages)
initial_inputs_data = {data["type"]: prompt}
elif "multipart/form-data" in request.headers.get("content-type"):
data = await request.form()
stream_opt = data.get("stream", True)
chat_request = ChatCompletionRequest.model_validate(data)
data_type = data.get("type")
file_summaries = []
if files:
for file in files:
file_path = f"/tmp/{file.filename}"
if data_type is not None and data_type in ["audio", "video"]:
raise ValueError(
"Audio and Video file uploads are not supported in docsum with curl request, please use the UI."
)
else:
import aiofiles
async with aiofiles.open(file_path, "wb") as f:
await f.write(await file.read())
docs = read_text_from_file(file, file_path)
os.remove(file_path)
if isinstance(docs, list):
file_summaries.extend(docs)
else:
file_summaries.append(docs)
if file_summaries:
prompt = self._handle_message(chat_request.messages) + "\n".join(file_summaries)
else:
prompt = self._handle_message(chat_request.messages)
data_type = data.get("type")
if data_type is not None:
initial_inputs_data = {}
initial_inputs_data[data_type] = prompt
else:
initial_inputs_data = {"query": prompt}
else:
raise ValueError(f"Unknown request type: {request.headers.get('content-type')}")
parameters = LLMParams(
max_tokens=chat_request.max_tokens if chat_request.max_tokens else 1024,
top_k=chat_request.top_k if chat_request.top_k else 10,
top_p=chat_request.top_p if chat_request.top_p else 0.95,
temperature=chat_request.temperature if chat_request.temperature else 0.01,
frequency_penalty=chat_request.frequency_penalty if chat_request.frequency_penalty else 0.0,
presence_penalty=chat_request.presence_penalty if chat_request.presence_penalty else 0.0,
repetition_penalty=chat_request.repetition_penalty if chat_request.repetition_penalty else 1.03,
streaming=stream_opt,
model=chat_request.model if chat_request.model else None,
language=chat_request.language if chat_request.language else "auto",
)
result_dict, runtime_graph = await self.megaservice.schedule(
initial_inputs=initial_inputs_data, llm_parameters=parameters
)
for node, response in result_dict.items():
# Here it suppose the last microservice in the megaservice is LLM.
if (
isinstance(response, StreamingResponse)
and node == list(self.megaservice.services.keys())[-1]
and self.megaservice.services[node].service_type == ServiceType.LLM
):
return response
last_node = runtime_graph.all_leaves()[-1]
response = result_dict[last_node]["text"]
choices = []
usage = UsageInfo()
choices.append(
ChatCompletionResponseChoice(
index=0,
message=ChatMessage(role="assistant", content=response),
finish_reason="stop",
)
)
return ChatCompletionResponse(model="docsum", choices=choices, usage=usage)
def start(self):
super().__init__(
megaservice=self.megaservice,
host=self.host,
port=self.port,
endpoint=str(MegaServiceEndpoint.DOC_SUMMARY),
input_datatype=ChatCompletionRequest,
output_datatype=ChatCompletionResponse,
)
if __name__ == "__main__":
docsum = DocSumService(port=MEGA_SERVICE_PORT)
docsum.add_remote_service()
docsum.start()