179 lines
5.9 KiB
Bash
179 lines
5.9 KiB
Bash
#!/bin/bash
|
|
|
|
# Copyright (C) 2024 Intel Corporation
|
|
# SPDX-License-Identifier: Apache-2.0
|
|
|
|
set -xe
|
|
IMAGE_REPO=${IMAGE_REPO:-"opea"}
|
|
IMAGE_TAG=${IMAGE_TAG:-"latest"}
|
|
echo "REGISTRY=IMAGE_REPO=${IMAGE_REPO}"
|
|
echo "TAG=IMAGE_TAG=${IMAGE_TAG}"
|
|
export REGISTRY=${IMAGE_REPO}
|
|
export TAG=${IMAGE_TAG}
|
|
export MODEL_CACHE=${model_cache:-"/var/lib/GenAI/data"}
|
|
|
|
WORKPATH=$(dirname "$PWD")
|
|
LOG_PATH="$WORKPATH/tests"
|
|
ip_address=$(hostname -I | awk '{print $1}')
|
|
|
|
function build_docker_images() {
|
|
opea_branch=${opea_branch:-"main"}
|
|
# If the opea_branch isn't main, replace the git clone branch in Dockerfile.
|
|
if [[ "${opea_branch}" != "main" ]]; then
|
|
cd $WORKPATH
|
|
OLD_STRING="RUN git clone --depth 1 https://github.com/opea-project/GenAIComps.git"
|
|
NEW_STRING="RUN git clone --depth 1 --branch ${opea_branch} https://github.com/opea-project/GenAIComps.git"
|
|
find . -type f -name "Dockerfile*" | while read -r file; do
|
|
echo "Processing file: $file"
|
|
sed -i "s|$OLD_STRING|$NEW_STRING|g" "$file"
|
|
done
|
|
fi
|
|
|
|
cd $WORKPATH/docker_image_build
|
|
git clone --depth 1 --branch ${opea_branch} https://github.com/opea-project/GenAIComps.git
|
|
|
|
echo "Build all the images with --no-cache, check docker_image_build.log for details..."
|
|
service_list="codetrans codetrans-ui llm-textgen nginx"
|
|
docker compose -f build.yaml build ${service_list} --no-cache > ${LOG_PATH}/docker_image_build.log
|
|
|
|
docker pull ghcr.io/huggingface/text-generation-inference:2.4.1-rocm
|
|
docker images && sleep 1s
|
|
}
|
|
|
|
function start_services() {
|
|
cd $WORKPATH/docker_compose/amd/gpu/rocm/
|
|
source set_env.sh
|
|
|
|
sed -i "s/backend_address/$ip_address/g" $WORKPATH/ui/svelte/.env
|
|
|
|
# Start Docker Containers
|
|
docker compose up -d > ${LOG_PATH}/start_services_with_compose.log
|
|
|
|
n=0
|
|
until [[ "$n" -ge 100 ]]; do
|
|
docker logs codetrans-tgi-service > ${LOG_PATH}/tgi_service_start.log
|
|
if grep -q Connected ${LOG_PATH}/tgi_service_start.log; then
|
|
break
|
|
fi
|
|
sleep 5s
|
|
n=$((n+1))
|
|
done
|
|
}
|
|
|
|
function validate_services() {
|
|
local URL="$1"
|
|
local EXPECTED_RESULT="$2"
|
|
local SERVICE_NAME="$3"
|
|
local DOCKER_NAME="$4"
|
|
local INPUT_DATA="$5"
|
|
|
|
local HTTP_STATUS=$(curl -s -o /dev/null -w "%{http_code}" -X POST -d "$INPUT_DATA" -H 'Content-Type: application/json' "$URL")
|
|
if [ "$HTTP_STATUS" -eq 200 ]; then
|
|
echo "[ $SERVICE_NAME ] HTTP status is 200. Checking content..."
|
|
|
|
local CONTENT=$(curl -s -X POST -d "$INPUT_DATA" -H 'Content-Type: application/json' "$URL" | tee ${LOG_PATH}/${SERVICE_NAME}.log)
|
|
|
|
if echo "$CONTENT" | grep -q "$EXPECTED_RESULT"; then
|
|
echo "[ $SERVICE_NAME ] Content is as expected."
|
|
else
|
|
echo "[ $SERVICE_NAME ] Content does not match the expected result: $CONTENT"
|
|
docker logs ${DOCKER_NAME} >> ${LOG_PATH}/${SERVICE_NAME}.log
|
|
exit 1
|
|
fi
|
|
else
|
|
echo "[ $SERVICE_NAME ] HTTP status is not 200. Received status was $HTTP_STATUS"
|
|
docker logs ${DOCKER_NAME} >> ${LOG_PATH}/${SERVICE_NAME}.log
|
|
exit 1
|
|
fi
|
|
sleep 5s
|
|
}
|
|
|
|
function validate_microservices() {
|
|
# tgi for embedding service
|
|
validate_services \
|
|
"${ip_address}:${CODETRANS_TGI_SERVICE_PORT}/generate" \
|
|
"generated_text" \
|
|
"codetrans-tgi-service" \
|
|
"codetrans-tgi-service" \
|
|
'{"inputs":"What is Deep Learning?","parameters":{"max_new_tokens":17, "do_sample": true}}'
|
|
sleep 10
|
|
# llm microservice
|
|
validate_services \
|
|
"${ip_address}:${CODETRANS_LLM_SERVICE_PORT}/v1/chat/completions" \
|
|
"data: " \
|
|
"codetrans-llm-server" \
|
|
"codetrans-llm-server" \
|
|
'{"query":" ### System: Please translate the following Golang codes into Python codes. ### Original codes: '\'''\'''\''Golang \npackage main\n\nimport \"fmt\"\nfunc main() {\n fmt.Println(\"Hello, World!\");\n '\'''\'''\'' ### Translated codes:"}'
|
|
|
|
}
|
|
|
|
function validate_megaservice() {
|
|
# Curl the Mega Service
|
|
validate_services \
|
|
"${ip_address}:${CODETRANS_BACKEND_SERVICE_PORT}/v1/codetrans" \
|
|
"print" \
|
|
"codetrans-backend-server" \
|
|
"codetrans-backend-server" \
|
|
'{"language_from": "Golang","language_to": "Python","source_code": "package main\n\nimport \"fmt\"\nfunc main() {\n fmt.Println(\"Hello, World!\");\n}\n"}'
|
|
|
|
# test the megeservice via nginx
|
|
validate_services \
|
|
"${ip_address}:${CODETRANS_NGINX_PORT}/v1/codetrans" \
|
|
"print" \
|
|
"codetrans-nginx-server" \
|
|
"codetrans-nginx-server" \
|
|
'{"language_from": "Golang","language_to": "Python","source_code": "package main\n\nimport \"fmt\"\nfunc main() {\n fmt.Println(\"Hello, World!\");\n}\n"}'
|
|
|
|
}
|
|
|
|
function validate_frontend() {
|
|
cd $WORKPATH/ui/svelte
|
|
local conda_env_name="OPEA_e2e"
|
|
export PATH=${HOME}/miniconda3/bin/:$PATH
|
|
if conda info --envs | grep -q "$conda_env_name"; then
|
|
echo "$conda_env_name exist!"
|
|
else
|
|
conda create -n ${conda_env_name} python=3.12 -y
|
|
fi
|
|
source activate ${conda_env_name}
|
|
|
|
sed -i "s/localhost/$ip_address/g" playwright.config.ts
|
|
|
|
conda install -c conda-forge nodejs=22.6.0 -y
|
|
npm install && npm ci && npx playwright install --with-deps
|
|
node -v && npm -v && pip list
|
|
|
|
exit_status=0
|
|
npx playwright test || exit_status=$?
|
|
|
|
if [ $exit_status -ne 0 ]; then
|
|
echo "[TEST INFO]: ---------frontend test failed---------"
|
|
exit $exit_status
|
|
else
|
|
echo "[TEST INFO]: ---------frontend test passed---------"
|
|
fi
|
|
}
|
|
|
|
function stop_docker() {
|
|
cd $WORKPATH/docker_compose/amd/gpu/rocm/
|
|
docker compose stop && docker compose rm -f
|
|
}
|
|
|
|
function main() {
|
|
|
|
stop_docker
|
|
|
|
if [[ "$IMAGE_REPO" == "opea" ]]; then build_docker_images; fi
|
|
start_services
|
|
|
|
validate_microservices
|
|
validate_megaservice
|
|
validate_frontend
|
|
|
|
stop_docker
|
|
echo y | docker system prune
|
|
|
|
}
|
|
|
|
main
|