Files
GenAIExamples/ChatQnA/tests/test_chatqna_on_xeon.sh
2024-08-08 22:23:32 +08:00

290 lines
10 KiB
Bash

#!/bin/bash
# Copyright (C) 2024 Intel Corporation
# SPDX-License-Identifier: Apache-2.0
set -xe
echo "IMAGE_REPO=${IMAGE_REPO}"
WORKPATH=$(dirname "$PWD")
LOG_PATH="$WORKPATH/tests"
ip_address=$(hostname -I | awk '{print $1}')
function build_docker_images() {
cd $WORKPATH
git clone https://github.com/opea-project/GenAIComps.git
cd GenAIComps
docker build -t opea/embedding-tei:latest -f comps/embeddings/langchain/docker/Dockerfile .
docker build -t opea/retriever-redis:latest -f comps/retrievers/langchain/redis/docker/Dockerfile .
docker build -t opea/reranking-tei:latest -f comps/reranks/tei/docker/Dockerfile .
docker build -t opea/llm-tgi:latest -f comps/llms/text-generation/tgi/Dockerfile .
docker build -t opea/dataprep-redis:latest -f comps/dataprep/redis/langchain/docker/Dockerfile .
cd $WORKPATH/docker
docker build --no-cache -t opea/chatqna:latest -f Dockerfile .
cd $WORKPATH/docker/ui
docker build --no-cache -t opea/chatqna-ui:latest -f docker/Dockerfile .
docker images
}
function start_services() {
cd $WORKPATH/docker/xeon
export EMBEDDING_MODEL_ID="BAAI/bge-base-en-v1.5"
export RERANK_MODEL_ID="BAAI/bge-reranker-base"
export LLM_MODEL_ID="Intel/neural-chat-7b-v3-3"
export TEI_EMBEDDING_ENDPOINT="http://${ip_address}:6006"
export TEI_RERANKING_ENDPOINT="http://${ip_address}:8808"
export TGI_LLM_ENDPOINT="http://${ip_address}:9009"
export REDIS_URL="redis://${ip_address}:6379"
export REDIS_HOST=${ip_address}
export INDEX_NAME="rag-redis"
export HUGGINGFACEHUB_API_TOKEN=${HUGGINGFACEHUB_API_TOKEN}
export MEGA_SERVICE_HOST_IP=${ip_address}
export EMBEDDING_SERVICE_HOST_IP=${ip_address}
export RETRIEVER_SERVICE_HOST_IP=${ip_address}
export RERANK_SERVICE_HOST_IP=${ip_address}
export LLM_SERVICE_HOST_IP=${ip_address}
export BACKEND_SERVICE_ENDPOINT="http://${ip_address}:8888/v1/chatqna"
export DATAPREP_SERVICE_ENDPOINT="http://${ip_address}:6007/v1/dataprep"
export DATAPREP_GET_FILE_ENDPOINT="http://${ip_address}:6007/v1/dataprep/get_file"
export DATAPREP_DELETE_FILE_ENDPOINT="http://${ip_address}:6007/v1/dataprep/delete_file"
sed -i "s/backend_address/$ip_address/g" $WORKPATH/docker/ui/svelte/.env
if [[ "$IMAGE_REPO" != "" ]]; then
# Replace the container name with a test-specific name
echo "using image repository $IMAGE_REPO and image tag $IMAGE_TAG"
if [ "${mode}" == "perf" ]; then
sed -i "s#image: opea/*#image: ${IMAGE_REPO}opea/#g" compose.yaml
else
sed -i "s#image: opea/chatqna:latest#image: opea/chatqna:${IMAGE_TAG}#g" compose.yaml
sed -i "s#image: opea/chatqna-ui:latest#image: opea/chatqna-ui:${IMAGE_TAG}#g" compose.yaml
sed -i "s#image: opea/chatqna-conversation-ui:latest#image: opea/chatqna-conversation-ui:${IMAGE_TAG}#g" compose.yaml
sed -i "s#image: opea/*#image: ${IMAGE_REPO}opea/#g" compose.yaml
fi
echo "cat compose.yaml"
cat compose.yaml
fi
# Start Docker Containers
docker compose up -d
n=0
until [[ "$n" -ge 500 ]]; do
docker logs tgi-service > ${LOG_PATH}/tgi_service_start.log
if grep -q Connected ${LOG_PATH}/tgi_service_start.log; then
break
fi
sleep 1s
n=$((n+1))
done
}
function validate_service() {
local URL="$1"
local EXPECTED_RESULT="$2"
local SERVICE_NAME="$3"
local DOCKER_NAME="$4"
local INPUT_DATA="$5"
if [[ $SERVICE_NAME == *"dataprep_upload_file"* ]]; then
cd $LOG_PATH
HTTP_RESPONSE=$(curl --silent --write-out "HTTPSTATUS:%{http_code}" -X POST -F 'files=@./dataprep_file.txt' -H 'Content-Type: multipart/form-data' "$URL")
elif [[ $SERVICE_NAME == *"dataprep_upload_link"* ]]; then
HTTP_RESPONSE=$(curl --silent --write-out "HTTPSTATUS:%{http_code}" -X POST -F 'link_list=["https://www.ces.tech/"]' "$URL")
elif [[ $SERVICE_NAME == *"dataprep_get"* ]]; then
HTTP_RESPONSE=$(curl --silent --write-out "HTTPSTATUS:%{http_code}" -X POST -H 'Content-Type: application/json' "$URL")
elif [[ $SERVICE_NAME == *"dataprep_del"* ]]; then
HTTP_RESPONSE=$(curl --silent --write-out "HTTPSTATUS:%{http_code}" -X POST -d '{"file_path": "all"}' -H 'Content-Type: application/json' "$URL")
else
HTTP_RESPONSE=$(curl --silent --write-out "HTTPSTATUS:%{http_code}" -X POST -d "$INPUT_DATA" -H 'Content-Type: application/json' "$URL")
fi
HTTP_STATUS=$(echo $HTTP_RESPONSE | tr -d '\n' | sed -e 's/.*HTTPSTATUS://')
RESPONSE_BODY=$(echo $HTTP_RESPONSE | sed -e 's/HTTPSTATUS\:.*//g')
docker logs ${DOCKER_NAME} >> ${LOG_PATH}/${SERVICE_NAME}.log
# check response status
if [ "$HTTP_STATUS" -ne "200" ]; then
echo "[ $SERVICE_NAME ] HTTP status is not 200. Received status was $HTTP_STATUS"
exit 1
else
echo "[ $SERVICE_NAME ] HTTP status is 200. Checking content..."
fi
# check response body
if [[ "$RESPONSE_BODY" != *"$EXPECTED_RESULT"* ]]; then
echo "[ $SERVICE_NAME ] Content does not match the expected result: $RESPONSE_BODY"
exit 1
else
echo "[ $SERVICE_NAME ] Content is as expected."
fi
sleep 1s
}
function validate_microservices() {
# Check if the microservices are running correctly.
# tei for embedding service
validate_service \
"${ip_address}:6006/embed" \
"[[" \
"tei-embedding" \
"tei-embedding-server" \
'{"inputs":"What is Deep Learning?"}'
# embedding microservice
validate_service \
"${ip_address}:6000/v1/embeddings" \
'"text":"What is Deep Learning?","embedding":[' \
"embedding-microservice" \
"embedding-tei-server" \
'{"text":"What is Deep Learning?"}'
sleep 1m # retrieval can't curl as expected, try to wait for more time
# test /v1/dataprep upload file
echo "Deep learning is a subset of machine learning that utilizes neural networks with multiple layers to analyze various levels of abstract data representations. It enables computers to identify patterns and make decisions with minimal human intervention by learning from large amounts of data." > $LOG_PATH/dataprep_file.txt
validate_service \
"http://${ip_address}:6007/v1/dataprep" \
"Data preparation succeeded" \
"dataprep_upload_file" \
"dataprep-redis-server"
# test /v1/dataprep upload link
validate_service \
"http://${ip_address}:6007/v1/dataprep" \
"Data preparation succeeded" \
"dataprep_upload_link" \
"dataprep-redis-server"
# test /v1/dataprep/get_file
validate_service \
"http://${ip_address}:6007/v1/dataprep/get_file" \
'{"name":' \
"dataprep_get" \
"dataprep-redis-server"
# test /v1/dataprep/delete_file
validate_service \
"http://${ip_address}:6007/v1/dataprep/delete_file" \
'{"status":true}' \
"dataprep_del" \
"dataprep-redis-server"
# retrieval microservice
test_embedding=$(python3 -c "import random; embedding = [random.uniform(-1, 1) for _ in range(768)]; print(embedding)")
validate_service \
"${ip_address}:7000/v1/retrieval" \
"retrieved_docs" \
"retrieval-microservice" \
"retriever-redis-server" \
"{\"text\":\"What is the revenue of Nike in 2023?\",\"embedding\":${test_embedding}}"
# tei for rerank microservice
validate_service \
"${ip_address}:8808/rerank" \
'{"index":1,"score":' \
"tei-rerank" \
"tei-reranking-server" \
'{"query":"What is Deep Learning?", "texts": ["Deep Learning is not...", "Deep learning is..."]}'
# rerank microservice
validate_service \
"${ip_address}:8000/v1/reranking" \
"Deep learning is..." \
"rerank-microservice" \
"reranking-tei-xeon-server" \
'{"initial_query":"What is Deep Learning?", "retrieved_docs": [{"text":"Deep Learning is not..."}, {"text":"Deep learning is..."}]}'
# tgi for llm service
validate_service \
"${ip_address}:9009/generate" \
"generated_text" \
"tgi-llm" \
"tgi-service" \
'{"inputs":"What is Deep Learning?","parameters":{"max_new_tokens":17, "do_sample": true}}'
# llm microservice
validate_service \
"${ip_address}:9000/v1/chat/completions" \
"data: " \
"llm-microservice" \
"llm-tgi-server" \
'{"query":"What is Deep Learning?"}'
}
function validate_megaservice() {
# Curl the Mega Service
validate_service \
"${ip_address}:8888/v1/chatqna" \
"data: " \
"chatqna-megaservice" \
"chatqna-xeon-backend-server" \
'{"messages": "What is the revenue of Nike in 2023?"}'
}
function validate_frontend() {
echo "[ TEST INFO ]: --------- frontend test started ---------"
cd $WORKPATH/docker/ui/svelte
local conda_env_name="OPEA_e2e"
export PATH=${HOME}/miniforge3/bin/:$PATH
# conda remove -n ${conda_env_name} --all -y
# conda create -n ${conda_env_name} python=3.12 -y
source activate ${conda_env_name}
echo "[ TEST INFO ]: --------- conda env activated ---------"
sed -i "s/localhost/$ip_address/g" playwright.config.ts
# conda install -c conda-forge nodejs -y
npm install && npm ci && npx playwright install --with-deps
node -v && npm -v && pip list
exit_status=0
npx playwright test || exit_status=$?
if [ $exit_status -ne 0 ]; then
echo "[TEST INFO]: ---------frontend test failed---------"
exit $exit_status
else
echo "[TEST INFO]: ---------frontend test passed---------"
fi
}
function stop_docker() {
cd $WORKPATH/docker/xeon
docker compose stop && docker compose rm -f
}
function main() {
stop_docker
if [[ "$IMAGE_REPO" == "" ]]; then build_docker_images; fi
start_time=$(date +%s)
start_services
end_time=$(date +%s)
duration=$((end_time-start_time))
echo "Mega service start duration is $duration s" && sleep 1s
if [ "${mode}" == "perf" ]; then
python3 $WORKPATH/tests/chatqna_benchmark.py
elif [ "${mode}" == "" ]; then
validate_microservices
echo "==== microservices validated ===="
validate_megaservice
echo "==== megaservice validated ===="
validate_frontend
echo "==== frontend validated ===="
fi
stop_docker
echo y | docker system prune
}
main