Files
GenAIExamples/ChatQnA/chatqna.py
XinyaoWa 6d24c1c77a Merge FaqGen into ChatQnA (#1654)
1. Delete FaqGen
2. Refactor FaqGen into ChatQnA, serve as a LLM selection.
3. Combine all ChatQnA related Dockerfile into one

Signed-off-by: Xinyao Wang <xinyao.wang@intel.com>
2025-03-20 17:40:00 +08:00

468 lines
19 KiB
Python

# Copyright (C) 2024 Intel Corporation
# SPDX-License-Identifier: Apache-2.0
import argparse
import json
import os
import re
from comps import MegaServiceEndpoint, MicroService, ServiceOrchestrator, ServiceRoleType, ServiceType
from comps.cores.mega.utils import handle_message
from comps.cores.proto.api_protocol import (
ChatCompletionRequest,
ChatCompletionResponse,
ChatCompletionResponseChoice,
ChatMessage,
UsageInfo,
)
from comps.cores.proto.docarray import LLMParams, RerankerParms, RetrieverParms
from fastapi import Request
from fastapi.responses import StreamingResponse
from langchain_core.prompts import PromptTemplate
class ChatTemplate:
@staticmethod
def generate_rag_prompt(question, documents):
context_str = "\n".join(documents)
if context_str and len(re.findall("[\u4E00-\u9FFF]", context_str)) / len(context_str) >= 0.3:
# chinese context
template = """
### 你将扮演一个乐于助人、尊重他人并诚实的助手,你的目标是帮助用户解答问题。有效地利用来自本地知识库的搜索结果。确保你的回答中只包含相关信息。如果你不确定问题的答案,请避免分享不准确的信息。
### 搜索结果:{context}
### 问题:{question}
### 回答:
"""
else:
template = """
### You are a helpful, respectful and honest assistant to help the user with questions. \
Please refer to the search results obtained from the local knowledge base. \
But be careful to not incorporate the information that you think is not relevant to the question. \
If you don't know the answer to a question, please don't share false information. \n
### Search results: {context} \n
### Question: {question} \n
### Answer:
"""
return template.format(context=context_str, question=question)
MEGA_SERVICE_PORT = int(os.getenv("MEGA_SERVICE_PORT", 8888))
GUARDRAIL_SERVICE_HOST_IP = os.getenv("GUARDRAIL_SERVICE_HOST_IP", "0.0.0.0")
GUARDRAIL_SERVICE_PORT = int(os.getenv("GUARDRAIL_SERVICE_PORT", 80))
EMBEDDING_SERVER_HOST_IP = os.getenv("EMBEDDING_SERVER_HOST_IP", "0.0.0.0")
EMBEDDING_SERVER_PORT = int(os.getenv("EMBEDDING_SERVER_PORT", 80))
RETRIEVER_SERVICE_HOST_IP = os.getenv("RETRIEVER_SERVICE_HOST_IP", "0.0.0.0")
RETRIEVER_SERVICE_PORT = int(os.getenv("RETRIEVER_SERVICE_PORT", 7000))
RERANK_SERVER_HOST_IP = os.getenv("RERANK_SERVER_HOST_IP", "0.0.0.0")
RERANK_SERVER_PORT = int(os.getenv("RERANK_SERVER_PORT", 80))
LLM_SERVER_HOST_IP = os.getenv("LLM_SERVER_HOST_IP", "0.0.0.0")
LLM_SERVER_PORT = int(os.getenv("LLM_SERVER_PORT", 80))
LLM_MODEL = os.getenv("LLM_MODEL", "meta-llama/Meta-Llama-3-8B-Instruct")
def align_inputs(self, inputs, cur_node, runtime_graph, llm_parameters_dict, **kwargs):
if self.services[cur_node].service_type == ServiceType.EMBEDDING:
inputs["inputs"] = inputs["text"]
del inputs["text"]
elif self.services[cur_node].service_type == ServiceType.RETRIEVER:
# prepare the retriever params
retriever_parameters = kwargs.get("retriever_parameters", None)
if retriever_parameters:
inputs.update(retriever_parameters.dict())
elif self.services[cur_node].service_type == ServiceType.LLM:
# convert TGI/vLLM to unified OpenAI /v1/chat/completions format
next_inputs = {}
next_inputs["model"] = LLM_MODEL
next_inputs["messages"] = [{"role": "user", "content": inputs["inputs"]}]
next_inputs["max_tokens"] = llm_parameters_dict["max_tokens"]
next_inputs["top_p"] = llm_parameters_dict["top_p"]
next_inputs["stream"] = inputs["stream"]
next_inputs["frequency_penalty"] = inputs["frequency_penalty"]
# next_inputs["presence_penalty"] = inputs["presence_penalty"]
# next_inputs["repetition_penalty"] = inputs["repetition_penalty"]
next_inputs["temperature"] = inputs["temperature"]
inputs = next_inputs
return inputs
def align_outputs(self, data, cur_node, inputs, runtime_graph, llm_parameters_dict, **kwargs):
next_data = {}
if self.services[cur_node].service_type == ServiceType.EMBEDDING:
assert isinstance(data, list)
next_data = {"text": inputs["inputs"], "embedding": data[0]}
elif self.services[cur_node].service_type == ServiceType.RETRIEVER:
docs = [doc["text"] for doc in data["retrieved_docs"]]
with_rerank = runtime_graph.downstream(cur_node)[0].startswith("rerank")
if with_rerank and docs:
# forward to rerank
# prepare inputs for rerank
next_data["query"] = data["initial_query"]
next_data["texts"] = [doc["text"] for doc in data["retrieved_docs"]]
else:
# forward to llm
if not docs and with_rerank:
# delete the rerank from retriever -> rerank -> llm
for ds in reversed(runtime_graph.downstream(cur_node)):
for nds in runtime_graph.downstream(ds):
runtime_graph.add_edge(cur_node, nds)
runtime_graph.delete_node_if_exists(ds)
# handle template
# if user provides template, then format the prompt with it
# otherwise, use the default template
prompt = data["initial_query"]
chat_template = llm_parameters_dict["chat_template"]
if chat_template:
prompt_template = PromptTemplate.from_template(chat_template)
input_variables = prompt_template.input_variables
if sorted(input_variables) == ["context", "question"]:
prompt = prompt_template.format(question=data["initial_query"], context="\n".join(docs))
elif input_variables == ["question"]:
prompt = prompt_template.format(question=data["initial_query"])
else:
print(f"{prompt_template} not used, we only support 2 input variables ['question', 'context']")
prompt = ChatTemplate.generate_rag_prompt(data["initial_query"], docs)
else:
prompt = ChatTemplate.generate_rag_prompt(data["initial_query"], docs)
next_data["inputs"] = prompt
elif self.services[cur_node].service_type == ServiceType.RERANK:
# rerank the inputs with the scores
reranker_parameters = kwargs.get("reranker_parameters", None)
top_n = reranker_parameters.top_n if reranker_parameters else 1
docs = inputs["texts"]
reranked_docs = []
for best_response in data[:top_n]:
reranked_docs.append(docs[best_response["index"]])
# handle template
# if user provides template, then format the prompt with it
# otherwise, use the default template
prompt = inputs["query"]
chat_template = llm_parameters_dict["chat_template"]
if chat_template:
prompt_template = PromptTemplate.from_template(chat_template)
input_variables = prompt_template.input_variables
if sorted(input_variables) == ["context", "question"]:
prompt = prompt_template.format(question=prompt, context="\n".join(reranked_docs))
elif input_variables == ["question"]:
prompt = prompt_template.format(question=prompt)
else:
print(f"{prompt_template} not used, we only support 2 input variables ['question', 'context']")
prompt = ChatTemplate.generate_rag_prompt(prompt, reranked_docs)
else:
prompt = ChatTemplate.generate_rag_prompt(prompt, reranked_docs)
next_data["inputs"] = prompt
elif self.services[cur_node].service_type == ServiceType.LLM and not llm_parameters_dict["stream"]:
if "faqgen" in self.services[cur_node].endpoint:
next_data = data
else:
next_data["text"] = data["choices"][0]["message"]["content"]
else:
next_data = data
return next_data
def align_generator(self, gen, **kwargs):
# OpenAI response format
# b'data:{"id":"","object":"text_completion","created":1725530204,"model":"meta-llama/Meta-Llama-3-8B-Instruct","system_fingerprint":"2.0.1-native","choices":[{"index":0,"delta":{"role":"assistant","content":"?"},"logprobs":null,"finish_reason":null}]}\n\n'
for line in gen:
line = line.decode("utf-8")
start = line.find("{")
end = line.rfind("}") + 1
json_str = line[start:end]
try:
# sometimes yield empty chunk, do a fallback here
json_data = json.loads(json_str)
if "ops" in json_data and "op" in json_data["ops"][0]:
if "value" in json_data["ops"][0] and isinstance(json_data["ops"][0]["value"], str):
yield f"data: {repr(json_data['ops'][0]['value'].encode('utf-8'))}\n\n"
else:
pass
elif (
json_data["choices"][0]["finish_reason"] != "eos_token"
and "content" in json_data["choices"][0]["delta"]
):
yield f"data: {repr(json_data['choices'][0]['delta']['content'].encode('utf-8'))}\n\n"
except Exception as e:
yield f"data: {repr(json_str.encode('utf-8'))}\n\n"
yield "data: [DONE]\n\n"
class ChatQnAService:
def __init__(self, host="0.0.0.0", port=8000):
self.host = host
self.port = port
ServiceOrchestrator.align_inputs = align_inputs
ServiceOrchestrator.align_outputs = align_outputs
ServiceOrchestrator.align_generator = align_generator
self.megaservice = ServiceOrchestrator()
self.endpoint = str(MegaServiceEndpoint.CHAT_QNA)
def add_remote_service(self):
embedding = MicroService(
name="embedding",
host=EMBEDDING_SERVER_HOST_IP,
port=EMBEDDING_SERVER_PORT,
endpoint="/embed",
use_remote_service=True,
service_type=ServiceType.EMBEDDING,
)
retriever = MicroService(
name="retriever",
host=RETRIEVER_SERVICE_HOST_IP,
port=RETRIEVER_SERVICE_PORT,
endpoint="/v1/retrieval",
use_remote_service=True,
service_type=ServiceType.RETRIEVER,
)
rerank = MicroService(
name="rerank",
host=RERANK_SERVER_HOST_IP,
port=RERANK_SERVER_PORT,
endpoint="/rerank",
use_remote_service=True,
service_type=ServiceType.RERANK,
)
llm = MicroService(
name="llm",
host=LLM_SERVER_HOST_IP,
port=LLM_SERVER_PORT,
endpoint="/v1/chat/completions",
use_remote_service=True,
service_type=ServiceType.LLM,
)
self.megaservice.add(embedding).add(retriever).add(rerank).add(llm)
self.megaservice.flow_to(embedding, retriever)
self.megaservice.flow_to(retriever, rerank)
self.megaservice.flow_to(rerank, llm)
def add_remote_service_without_rerank(self):
embedding = MicroService(
name="embedding",
host=EMBEDDING_SERVER_HOST_IP,
port=EMBEDDING_SERVER_PORT,
endpoint="/embed",
use_remote_service=True,
service_type=ServiceType.EMBEDDING,
)
retriever = MicroService(
name="retriever",
host=RETRIEVER_SERVICE_HOST_IP,
port=RETRIEVER_SERVICE_PORT,
endpoint="/v1/retrieval",
use_remote_service=True,
service_type=ServiceType.RETRIEVER,
)
llm = MicroService(
name="llm",
host=LLM_SERVER_HOST_IP,
port=LLM_SERVER_PORT,
endpoint="/v1/chat/completions",
use_remote_service=True,
service_type=ServiceType.LLM,
)
self.megaservice.add(embedding).add(retriever).add(llm)
self.megaservice.flow_to(embedding, retriever)
self.megaservice.flow_to(retriever, llm)
def add_remote_service_with_guardrails(self):
guardrail_in = MicroService(
name="guardrail_in",
host=GUARDRAIL_SERVICE_HOST_IP,
port=GUARDRAIL_SERVICE_PORT,
endpoint="/v1/guardrails",
use_remote_service=True,
service_type=ServiceType.GUARDRAIL,
)
embedding = MicroService(
name="embedding",
host=EMBEDDING_SERVER_HOST_IP,
port=EMBEDDING_SERVER_PORT,
endpoint="/embed",
use_remote_service=True,
service_type=ServiceType.EMBEDDING,
)
retriever = MicroService(
name="retriever",
host=RETRIEVER_SERVICE_HOST_IP,
port=RETRIEVER_SERVICE_PORT,
endpoint="/v1/retrieval",
use_remote_service=True,
service_type=ServiceType.RETRIEVER,
)
rerank = MicroService(
name="rerank",
host=RERANK_SERVER_HOST_IP,
port=RERANK_SERVER_PORT,
endpoint="/rerank",
use_remote_service=True,
service_type=ServiceType.RERANK,
)
llm = MicroService(
name="llm",
host=LLM_SERVER_HOST_IP,
port=LLM_SERVER_PORT,
endpoint="/v1/chat/completions",
use_remote_service=True,
service_type=ServiceType.LLM,
)
# guardrail_out = MicroService(
# name="guardrail_out",
# host=GUARDRAIL_SERVICE_HOST_IP,
# port=GUARDRAIL_SERVICE_PORT,
# endpoint="/v1/guardrails",
# use_remote_service=True,
# service_type=ServiceType.GUARDRAIL,
# )
# self.megaservice.add(guardrail_in).add(embedding).add(retriever).add(rerank).add(llm).add(guardrail_out)
self.megaservice.add(guardrail_in).add(embedding).add(retriever).add(rerank).add(llm)
self.megaservice.flow_to(guardrail_in, embedding)
self.megaservice.flow_to(embedding, retriever)
self.megaservice.flow_to(retriever, rerank)
self.megaservice.flow_to(rerank, llm)
# self.megaservice.flow_to(llm, guardrail_out)
def add_remote_service_faqgen(self):
embedding = MicroService(
name="embedding",
host=EMBEDDING_SERVER_HOST_IP,
port=EMBEDDING_SERVER_PORT,
endpoint="/embed",
use_remote_service=True,
service_type=ServiceType.EMBEDDING,
)
retriever = MicroService(
name="retriever",
host=RETRIEVER_SERVICE_HOST_IP,
port=RETRIEVER_SERVICE_PORT,
endpoint="/v1/retrieval",
use_remote_service=True,
service_type=ServiceType.RETRIEVER,
)
rerank = MicroService(
name="rerank",
host=RERANK_SERVER_HOST_IP,
port=RERANK_SERVER_PORT,
endpoint="/rerank",
use_remote_service=True,
service_type=ServiceType.RERANK,
)
llm = MicroService(
name="llm",
host=LLM_SERVER_HOST_IP,
port=LLM_SERVER_PORT,
endpoint="/v1/faqgen",
use_remote_service=True,
service_type=ServiceType.LLM,
)
self.megaservice.add(embedding).add(retriever).add(rerank).add(llm)
self.megaservice.flow_to(embedding, retriever)
self.megaservice.flow_to(retriever, rerank)
self.megaservice.flow_to(rerank, llm)
async def handle_request(self, request: Request):
data = await request.json()
stream_opt = data.get("stream", True)
chat_request = ChatCompletionRequest.parse_obj(data)
prompt = handle_message(chat_request.messages)
parameters = LLMParams(
max_tokens=chat_request.max_tokens if chat_request.max_tokens else 1024,
top_k=chat_request.top_k if chat_request.top_k else 10,
top_p=chat_request.top_p if chat_request.top_p else 0.95,
temperature=chat_request.temperature if chat_request.temperature else 0.01,
frequency_penalty=chat_request.frequency_penalty if chat_request.frequency_penalty else 0.0,
presence_penalty=chat_request.presence_penalty if chat_request.presence_penalty else 0.0,
repetition_penalty=chat_request.repetition_penalty if chat_request.repetition_penalty else 1.03,
stream=stream_opt,
chat_template=chat_request.chat_template if chat_request.chat_template else None,
model=chat_request.model if chat_request.model else None,
)
retriever_parameters = RetrieverParms(
search_type=chat_request.search_type if chat_request.search_type else "similarity",
k=chat_request.k if chat_request.k else 4,
distance_threshold=chat_request.distance_threshold if chat_request.distance_threshold else None,
fetch_k=chat_request.fetch_k if chat_request.fetch_k else 20,
lambda_mult=chat_request.lambda_mult if chat_request.lambda_mult else 0.5,
score_threshold=chat_request.score_threshold if chat_request.score_threshold else 0.2,
)
reranker_parameters = RerankerParms(
top_n=chat_request.top_n if chat_request.top_n else 1,
)
result_dict, runtime_graph = await self.megaservice.schedule(
initial_inputs={"text": prompt},
llm_parameters=parameters,
retriever_parameters=retriever_parameters,
reranker_parameters=reranker_parameters,
)
for node, response in result_dict.items():
if isinstance(response, StreamingResponse):
return response
last_node = runtime_graph.all_leaves()[-1]
response = result_dict[last_node]["text"]
choices = []
usage = UsageInfo()
choices.append(
ChatCompletionResponseChoice(
index=0,
message=ChatMessage(role="assistant", content=response),
finish_reason="stop",
)
)
return ChatCompletionResponse(model="chatqna", choices=choices, usage=usage)
def start(self):
self.service = MicroService(
self.__class__.__name__,
service_role=ServiceRoleType.MEGASERVICE,
host=self.host,
port=self.port,
endpoint=self.endpoint,
input_datatype=ChatCompletionRequest,
output_datatype=ChatCompletionResponse,
)
self.service.add_route(self.endpoint, self.handle_request, methods=["POST"])
self.service.start()
if __name__ == "__main__":
parser = argparse.ArgumentParser()
parser.add_argument("--without-rerank", action="store_true")
parser.add_argument("--with-guardrails", action="store_true")
parser.add_argument("--faqgen", action="store_true")
args = parser.parse_args()
chatqna = ChatQnAService(port=MEGA_SERVICE_PORT)
if args.without_rerank:
chatqna.add_remote_service_without_rerank()
elif args.with_guardrails:
chatqna.add_remote_service_with_guardrails()
elif args.faqgen:
chatqna.add_remote_service_faqgen()
else:
chatqna.add_remote_service()
chatqna.start()