341 lines
13 KiB
Bash
341 lines
13 KiB
Bash
#!/bin/bash
|
|
# Copyright (C) 2024 Advanced Micro Devices, Inc.
|
|
# SPDX-License-Identifier: Apache-2.0
|
|
|
|
set -ex
|
|
IMAGE_REPO=${IMAGE_REPO:-"opea"}
|
|
IMAGE_TAG=${IMAGE_TAG:-"latest"}
|
|
echo "REGISTRY=IMAGE_REPO=${IMAGE_REPO}"
|
|
echo "TAG=IMAGE_TAG=${IMAGE_TAG}"
|
|
export REGISTRY=${IMAGE_REPO}
|
|
export TAG=${IMAGE_TAG}
|
|
|
|
WORKPATH=$(dirname "$PWD")
|
|
LOG_PATH="$WORKPATH/tests"
|
|
ip_address=$(hostname -I | awk '{print $1}')
|
|
|
|
export image_fn="apple.png"
|
|
export video_fn="WeAreGoingOnBullrun.mp4"
|
|
export caption_fn="apple.txt"
|
|
|
|
function build_docker_images() {
|
|
opea_branch=${opea_branch:-"main"}
|
|
# If the opea_branch isn't main, replace the git clone branch in Dockerfile.
|
|
if [[ "${opea_branch}" != "main" ]]; then
|
|
cd $WORKPATH
|
|
OLD_STRING="RUN git clone --depth 1 https://github.com/opea-project/GenAIComps.git"
|
|
NEW_STRING="RUN git clone --depth 1 --branch ${opea_branch} https://github.com/opea-project/GenAIComps.git"
|
|
find . -type f -name "Dockerfile*" | while read -r file; do
|
|
echo "Processing file: $file"
|
|
sed -i "s|$OLD_STRING|$NEW_STRING|g" "$file"
|
|
done
|
|
fi
|
|
|
|
cd $WORKPATH/docker_image_build
|
|
git clone https://github.com/opea-project/GenAIComps.git && cd GenAIComps && git checkout "${opea_branch:-"main"}" && cd ../
|
|
echo "Build all the images with --no-cache, check docker_image_build.log for details..."
|
|
service_list="multimodalqna multimodalqna-ui embedding-multimodal-bridgetower embedding retriever lvm dataprep whisper vllm-rocm"
|
|
docker compose -f build.yaml build ${service_list} --no-cache > ${LOG_PATH}/docker_image_build.log
|
|
|
|
docker images && sleep 1m
|
|
}
|
|
|
|
function setup_env() {
|
|
export HOST_IP=${ip_address}
|
|
export host_ip=${ip_address}
|
|
export MULTIMODAL_HUGGINGFACEHUB_API_TOKEN=${HUGGINGFACEHUB_API_TOKEN}
|
|
export MULTIMODAL_VLLM_SERVICE_PORT="8399"
|
|
export no_proxy=${your_no_proxy}
|
|
export http_proxy=${your_http_proxy}
|
|
export https_proxy=${your_http_proxy}
|
|
export BRIDGE_TOWER_EMBEDDING=true
|
|
export EMBEDDER_PORT=6006
|
|
export MMEI_EMBEDDING_ENDPOINT="http://${HOST_IP}:$EMBEDDER_PORT"
|
|
export MM_EMBEDDING_PORT_MICROSERVICE=6000
|
|
export WHISPER_SERVER_PORT=7066
|
|
export WHISPER_SERVER_ENDPOINT="http://${HOST_IP}:${WHISPER_SERVER_PORT}/v1/asr"
|
|
export REDIS_URL="redis://${HOST_IP}:6379"
|
|
export REDIS_HOST=${HOST_IP}
|
|
export INDEX_NAME="mm-rag-redis"
|
|
export LVM_ENDPOINT="http://${HOST_IP}:8399"
|
|
export EMBEDDING_MODEL_ID="BridgeTower/bridgetower-large-itm-mlm-itc"
|
|
export MULTIMODAL_LLM_MODEL_ID="Xkev/Llama-3.2V-11B-cot"
|
|
export WHISPER_MODEL="base"
|
|
export MM_EMBEDDING_SERVICE_HOST_IP=${HOST_IP}
|
|
export MM_RETRIEVER_SERVICE_HOST_IP=${HOST_IP}
|
|
export LVM_SERVICE_HOST_IP=${HOST_IP}
|
|
export MEGA_SERVICE_HOST_IP=${HOST_IP}
|
|
export BACKEND_SERVICE_ENDPOINT="http://${HOST_IP}:8888/v1/multimodalqna"
|
|
export DATAPREP_INGEST_SERVICE_ENDPOINT="http://${HOST_IP}:6007/v1/dataprep/ingest"
|
|
export DATAPREP_GEN_TRANSCRIPT_SERVICE_ENDPOINT="http://${HOST_IP}:6007/v1/dataprep/generate_transcripts"
|
|
export DATAPREP_GEN_CAPTION_SERVICE_ENDPOINT="http://${HOST_IP}:6007/v1/dataprep/generate_captions"
|
|
export DATAPREP_GET_FILE_ENDPOINT="http://${HOST_IP}:6007/v1/dataprep/get"
|
|
export DATAPREP_DELETE_FILE_ENDPOINT="http://${HOST_IP}:6007/v1/dataprep/delete"
|
|
export MODEL_CACHE=${model_cache:-"/var/opea/multimodalqna-service/data"}
|
|
}
|
|
|
|
function start_services() {
|
|
cd $WORKPATH/docker_compose/amd/gpu/rocm
|
|
docker compose -f compose_vllm.yaml up -d > ${LOG_PATH}/start_services_with_compose.log
|
|
n=0
|
|
until [[ "$n" -ge 100 ]]; do
|
|
docker logs multimodalqna-vllm-service >& $LOG_PATH/search-vllm-service_start.log
|
|
if grep -q "Application startup complete" $LOG_PATH/search-vllm-service_start.log; then
|
|
break
|
|
fi
|
|
sleep 10s
|
|
n=$((n+1))
|
|
done
|
|
}
|
|
|
|
function prepare_data() {
|
|
cd $LOG_PATH
|
|
echo "Downloading image and video"
|
|
wget https://github.com/docarray/docarray/blob/main/tests/toydata/image-data/apple.png?raw=true -O ${image_fn}
|
|
wget http://commondatastorage.googleapis.com/gtv-videos-bucket/sample/WeAreGoingOnBullrun.mp4 -O ${video_fn}
|
|
echo "Writing caption file"
|
|
echo "This is an apple." > ${caption_fn}
|
|
sleep 1m
|
|
}
|
|
|
|
|
|
function validate_service() {
|
|
local URL="$1"
|
|
local EXPECTED_RESULT="$2"
|
|
local SERVICE_NAME="$3"
|
|
local DOCKER_NAME="$4"
|
|
local INPUT_DATA="$5"
|
|
|
|
if [[ $SERVICE_NAME == *"dataprep-multimodal-redis-transcript"* ]]; then
|
|
cd $LOG_PATH
|
|
HTTP_RESPONSE=$(curl --silent --write-out "HTTPSTATUS:%{http_code}" -X POST -F "files=@./${video_fn}" -H 'Content-Type: multipart/form-data' "$URL")
|
|
elif [[ $SERVICE_NAME == *"dataprep-multimodal-redis-caption"* ]]; then
|
|
cd $LOG_PATH
|
|
HTTP_RESPONSE=$(curl --silent --write-out "HTTPSTATUS:%{http_code}" -X POST -F "files=@./${image_fn}" -H 'Content-Type: multipart/form-data' "$URL")
|
|
elif [[ $SERVICE_NAME == *"dataprep-multimodal-redis-ingest"* ]]; then
|
|
cd $LOG_PATH
|
|
HTTP_RESPONSE=$(curl --silent --write-out "HTTPSTATUS:%{http_code}" -X POST -F "files=@./${image_fn}" -F "files=@./apple.txt" -H 'Content-Type: multipart/form-data' "$URL")
|
|
elif [[ $SERVICE_NAME == *"dataprep_get"* ]]; then
|
|
HTTP_RESPONSE=$(curl --silent --write-out "HTTPSTATUS:%{http_code}" -X POST -H 'Content-Type: application/json' "$URL")
|
|
elif [[ $SERVICE_NAME == *"dataprep_del"* ]]; then
|
|
HTTP_RESPONSE=$(curl --silent --write-out "HTTPSTATUS:%{http_code}" -X POST -d '{"file_path": "apple.txt"}' -H 'Content-Type: application/json' "$URL")
|
|
else
|
|
HTTP_RESPONSE=$(curl --silent --write-out "HTTPSTATUS:%{http_code}" -X POST -d "$INPUT_DATA" -H 'Content-Type: application/json' "$URL")
|
|
fi
|
|
HTTP_STATUS=$(echo $HTTP_RESPONSE | tr -d '\n' | sed -e 's/.*HTTPSTATUS://')
|
|
RESPONSE_BODY=$(echo $HTTP_RESPONSE | sed -e 's/HTTPSTATUS\:.*//g')
|
|
|
|
docker logs ${DOCKER_NAME} >> ${LOG_PATH}/${SERVICE_NAME}.log
|
|
|
|
# check response status
|
|
if [ "$HTTP_STATUS" -ne "200" ]; then
|
|
echo "[ $SERVICE_NAME ] HTTP status is not 200. Received status was $HTTP_STATUS"
|
|
exit 1
|
|
else
|
|
echo "[ $SERVICE_NAME ] HTTP status is 200. Checking content..."
|
|
fi
|
|
# check response body
|
|
if [[ "$RESPONSE_BODY" != *"$EXPECTED_RESULT"* ]]; then
|
|
echo "[ $SERVICE_NAME ] Content does not match the expected result: $RESPONSE_BODY"
|
|
exit 1
|
|
else
|
|
echo "[ $SERVICE_NAME ] Content is as expected."
|
|
fi
|
|
|
|
sleep 1s
|
|
}
|
|
|
|
function validate_microservices() {
|
|
# Check if the microservices are running correctly.
|
|
|
|
# Bridgetower Embedding Server
|
|
echo "Validating embedding-multimodal-bridgetower"
|
|
validate_service \
|
|
"http://${host_ip}:${EMBEDDER_PORT}/v1/encode" \
|
|
'"embedding":[' \
|
|
"embedding-multimodal-bridgetower" \
|
|
"embedding-multimodal-bridgetower" \
|
|
'{"text":"This is example"}'
|
|
|
|
validate_service \
|
|
"http://${host_ip}:${EMBEDDER_PORT}/v1/encode" \
|
|
'"embedding":[' \
|
|
"embedding-multimodal-bridgetower" \
|
|
"embedding-multimodal-bridgetower" \
|
|
'{"text":"This is example", "img_b64_str": "iVBORw0KGgoAAAANSUhEUgAAAAoAAAAKCAYAAACNMs+9AAAAFUlEQVR42mP8/5+hnoEIwDiqkL4KAcT9GO0U4BxoAAAAAElFTkSuQmCC"}'
|
|
|
|
# embedding microservice
|
|
echo "Validating embedding"
|
|
validate_service \
|
|
"http://${host_ip}:$MM_EMBEDDING_PORT_MICROSERVICE/v1/embeddings" \
|
|
'"embedding":[' \
|
|
"embedding" \
|
|
"embedding" \
|
|
'{"text" : "This is some sample text."}'
|
|
|
|
validate_service \
|
|
"http://${host_ip}:$MM_EMBEDDING_PORT_MICROSERVICE/v1/embeddings" \
|
|
'"embedding":[' \
|
|
"embedding" \
|
|
"embedding" \
|
|
'{"text": {"text" : "This is some sample text."}, "image" : {"url": "https://github.com/docarray/docarray/blob/main/tests/toydata/image-data/apple.png?raw=true"}}'
|
|
|
|
sleep 1m # retrieval can't curl as expected, try to wait for more time
|
|
|
|
# test data prep
|
|
echo "Data Prep with Generating Transcript for Video"
|
|
validate_service \
|
|
"${DATAPREP_GEN_TRANSCRIPT_SERVICE_ENDPOINT}" \
|
|
"Data preparation succeeded" \
|
|
"dataprep-multimodal-redis-transcript" \
|
|
"dataprep-multimodal-redis"
|
|
|
|
echo "Data Prep with Image & Caption Ingestion"
|
|
validate_service \
|
|
"${DATAPREP_INGEST_SERVICE_ENDPOINT}" \
|
|
"Data preparation succeeded" \
|
|
"dataprep-multimodal-redis-ingest" \
|
|
"dataprep-multimodal-redis"
|
|
|
|
echo "Validating get file returns mp4"
|
|
validate_service \
|
|
"${DATAPREP_GET_FILE_ENDPOINT}" \
|
|
'.mp4' \
|
|
"dataprep_get" \
|
|
"dataprep-multimodal-redis"
|
|
|
|
echo "Validating get file returns png"
|
|
validate_service \
|
|
"${DATAPREP_GET_FILE_ENDPOINT}" \
|
|
'.png' \
|
|
"dataprep_get" \
|
|
"dataprep-multimodal-redis"
|
|
|
|
sleep 2m
|
|
|
|
# multimodal retrieval microservice
|
|
echo "Validating retriever-redis"
|
|
your_embedding=$(python3 -c "import random; embedding = [random.uniform(-1, 1) for _ in range(512)]; print(embedding)")
|
|
validate_service \
|
|
"http://${host_ip}:7000/v1/retrieval" \
|
|
"retrieved_docs" \
|
|
"retriever-redis" \
|
|
"retriever-redis" \
|
|
"{\"text\":\"test\",\"embedding\":${your_embedding}}"
|
|
|
|
sleep 5m
|
|
|
|
#vLLM Service
|
|
echo "Evaluating vllm"
|
|
validate_service \
|
|
"${host_ip}:${MULTIMODAL_VLLM_SERVICE_PORT}/v1/chat/completions" \
|
|
"content" \
|
|
"multimodalqna-vllm-service" \
|
|
"multimodalqna-vllm-service" \
|
|
'{"model": "Xkev/Llama-3.2V-11B-cot", "messages": [{"role": "user", "content": "What is Deep Learning?"}], "max_tokens": 17}'
|
|
|
|
# lvm
|
|
echo "Evaluating lvm"
|
|
validate_service \
|
|
"http://${host_ip}:9399/v1/lvm" \
|
|
'"text":"' \
|
|
"lvm" \
|
|
"lvm" \
|
|
'{"retrieved_docs": [], "initial_query": "What is this?", "top_n": 1, "metadata": [{"b64_img_str": "iVBORw0KGgoAAAANSUhEUgAAAAoAAAAKCAYAAACNMs+9AAAAFUlEQVR42mP8/5+hnoEIwDiqkL4KAcT9GO0U4BxoAAAAAElFTkSuQmCC", "transcript_for_inference": "yellow image", "video_id": "8c7461df-b373-4a00-8696-9a2234359fe0", "time_of_frame_ms":"37000000", "source_video":"WeAreGoingOnBullrun_8c7461df-b373-4a00-8696-9a2234359fe0.mp4"}], "chat_template":"The caption of the image is: '\''{context}'\''. {question}"}'
|
|
|
|
# data prep requiring lvm
|
|
echo "Data Prep with Generating Caption for Image"
|
|
validate_service \
|
|
"${DATAPREP_GEN_CAPTION_SERVICE_ENDPOINT}" \
|
|
"Data preparation succeeded" \
|
|
"dataprep-multimodal-redis-caption" \
|
|
"dataprep-multimodal-redis"
|
|
|
|
sleep 3m
|
|
}
|
|
|
|
function validate_megaservice() {
|
|
# Curl the Mega Service with retrieval
|
|
echo "Validate megaservice with first query"
|
|
validate_service \
|
|
"http://${host_ip}:8888/v1/multimodalqna" \
|
|
'"time_of_frame_ms":' \
|
|
"multimodalqna" \
|
|
"multimodalqna-backend-server" \
|
|
'{"messages": "What is the revenue of Nike in 2023?"}'
|
|
|
|
echo "Validate megaservice with first audio query"
|
|
validate_service \
|
|
"http://${host_ip}:8888/v1/multimodalqna" \
|
|
'"time_of_frame_ms":' \
|
|
"multimodalqna" \
|
|
"multimodalqna-backend-server" \
|
|
'{"messages": [{"role": "user", "content": [{"type": "audio", "audio": "UklGRigAAABXQVZFZm10IBIAAAABAAEARKwAAIhYAQACABAAAABkYXRhAgAAAAEA"}]}]}'
|
|
|
|
echo "Validate megaservice with follow-up query"
|
|
validate_service \
|
|
"http://${host_ip}:8888/v1/multimodalqna" \
|
|
'"content":"' \
|
|
"multimodalqna" \
|
|
"multimodalqna-backend-server" \
|
|
'{"messages": [{"role": "user", "content": [{"type": "audio", "audio": "UklGRigAAABXQVZFZm10IBIAAAABAAEARKwAAIhYAQACABAAAABkYXRhAgAAAAEA"}, {"type": "image_url", "image_url": {"url": "https://www.ilankelman.org/stopsigns/australia.jpg"}}]}, {"role": "assistant", "content": "opea project! "}, {"role": "user", "content": [{"type": "text", "text": "goodbye"}]}]}'
|
|
|
|
echo "Validate megaservice with multiple text queries"
|
|
validate_service \
|
|
"http://${host_ip}:8888/v1/multimodalqna" \
|
|
'"content":"' \
|
|
"multimodalqna" \
|
|
"multimodalqna-backend-server" \
|
|
'{"messages": [{"role": "user", "content": [{"type": "text", "text": "hello, "}]}, {"role": "assistant", "content": "opea project! "}, {"role": "user", "content": [{"type": "text", "text": "goodbye"}]}]}'
|
|
}
|
|
|
|
function validate_delete {
|
|
echo "Validate data prep delete files"
|
|
export DATAPREP_DELETE_FILE_ENDPOINT="http://${HOST_IP}:6007/v1/dataprep/delete"
|
|
validate_service \
|
|
"${DATAPREP_DELETE_FILE_ENDPOINT}" \
|
|
'{"status":true}' \
|
|
"dataprep_del" \
|
|
"dataprep-multimodal-redis"
|
|
}
|
|
|
|
function delete_data() {
|
|
cd $LOG_PATH
|
|
echo "Deleting image, video, and caption"
|
|
rm -rf ${image_fn}
|
|
rm -rf ${video_fn}
|
|
rm -rf ${caption_fn}
|
|
}
|
|
|
|
function stop_docker() {
|
|
cd $WORKPATH/docker_compose/amd/gpu/rocm
|
|
docker compose -f compose.yaml stop && docker compose -f compose.yaml rm -f
|
|
}
|
|
|
|
function main() {
|
|
|
|
setup_env
|
|
stop_docker
|
|
if [[ "$IMAGE_REPO" == "opea" ]]; then build_docker_images; fi
|
|
start_time=$(date +%s)
|
|
start_services
|
|
end_time=$(date +%s)
|
|
duration=$((end_time-start_time))
|
|
echo "Mega service start duration is $duration s" && sleep 1s
|
|
prepare_data
|
|
|
|
validate_microservices
|
|
echo "==== microservices validated ===="
|
|
validate_megaservice
|
|
echo "==== megaservice validated ===="
|
|
validate_delete
|
|
echo "==== delete validated ===="
|
|
|
|
delete_data
|
|
stop_docker
|
|
echo y | docker system prune
|
|
|
|
}
|
|
|
|
main
|