Files
GenAIExamples/MultimodalQnA/tests/test_compose_milvus_on_xeon.sh
2025-04-21 10:11:39 +08:00

391 lines
16 KiB
Bash

#!/bin/bash
# Copyright (C) 2024 Intel Corporation
# SPDX-License-Identifier: Apache-2.0
set -x
IMAGE_REPO=${IMAGE_REPO:-"opea"}
IMAGE_TAG=${IMAGE_TAG:-"latest"}
echo "REGISTRY=IMAGE_REPO=${IMAGE_REPO}"
echo "TAG=IMAGE_TAG=${IMAGE_TAG}"
export REGISTRY=${IMAGE_REPO}
export TAG=${IMAGE_TAG}
WORKPATH=$(dirname "$PWD")
LOG_PATH="$WORKPATH/tests"
ip_address=$(hostname -I | awk '{print $1}')
export image_fn="apple.png"
export video_fn="WeAreGoingOnBullrun.mp4"
export caption_fn="apple.txt"
export pdf_fn="nke-10k-2023.pdf"
function check_service_ready() {
local container_name="$1"
local max_retries="$2"
local log_string="$3"
for i in $(seq 1 "$max_retries")
do
service_logs=$(docker logs "$container_name" 2>&1 | grep "$log_string" || true)
if [[ -z "$service_logs" ]]; then
echo "The $container_name service is not ready yet, sleeping 30s..."
sleep 30s
else
echo "$container_name service is ready"
break
fi
done
if [[ $i -ge $max_retries ]]; then
echo "WARNING: Max retries reached when waiting for the $container_name service to be ready"
docker logs "$container_name" >> "${LOG_PATH}/$container_name_file.log"
fi
}
function build_docker_images() {
opea_branch=${opea_branch:-"main"}
# If the opea_branch isn't main, replace the git clone branch in Dockerfile.
if [[ "${opea_branch}" != "main" ]]; then
cd $WORKPATH
OLD_STRING="RUN git clone --depth 1 https://github.com/opea-project/GenAIComps.git"
NEW_STRING="RUN git clone --depth 1 --branch ${opea_branch} https://github.com/opea-project/GenAIComps.git"
find . -type f -name "Dockerfile*" | while read -r file; do
echo "Processing file: $file"
sed -i "s|$OLD_STRING|$NEW_STRING|g" "$file"
done
fi
cd $WORKPATH/docker_image_build
git clone --depth 1 --branch ${opea_branch} https://github.com/opea-project/GenAIComps.git
echo "Build all the images with --no-cache, check docker_image_build.log for details..."
service_list="multimodalqna multimodalqna-ui embedding-multimodal-bridgetower embedding retriever lvm-llava lvm dataprep whisper"
docker compose -f build.yaml build ${service_list} --no-cache > ${LOG_PATH}/docker_image_build.log
docker images && sleep 1s
}
function setup_env() {
export host_ip=${ip_address}
export MM_EMBEDDING_SERVICE_HOST_IP=${host_ip}
export MM_RETRIEVER_SERVICE_HOST_IP=${host_ip}
export LVM_SERVICE_HOST_IP=${host_ip}
export MEGA_SERVICE_HOST_IP=${host_ip}
export HUGGINGFACEHUB_API_TOKEN=${HUGGINGFACEHUB_API_TOKEN}
export WHISPER_PORT=7066
export MAX_IMAGES=1
export WHISPER_MODEL="base"
export WHISPER_SERVER_ENDPOINT="http://${host_ip}:${WHISPER_PORT}/v1/asr"
export COLLECTION_NAME="LangChainCollection"
export MILVUS_HOST=${host_ip}
export DATAPREP_MMR_PORT=6007
export DATAPREP_INGEST_SERVICE_ENDPOINT="http://${host_ip}:${DATAPREP_MMR_PORT}/v1/dataprep/ingest"
export DATAPREP_GEN_TRANSCRIPT_SERVICE_ENDPOINT="http://${host_ip}:${DATAPREP_MMR_PORT}/v1/dataprep/generate_transcripts"
export DATAPREP_GEN_CAPTION_SERVICE_ENDPOINT="http://${host_ip}:${DATAPREP_MMR_PORT}/v1/dataprep/generate_captions"
export DATAPREP_GET_FILE_ENDPOINT="http://${host_ip}:${DATAPREP_MMR_PORT}/v1/dataprep/get"
export DATAPREP_DELETE_FILE_ENDPOINT="http://${host_ip}:${DATAPREP_MMR_PORT}/v1/dataprep/delete"
export EMM_BRIDGETOWER_PORT=6006
export BRIDGE_TOWER_EMBEDDING=true
export EMBEDDING_MODEL_ID="BridgeTower/bridgetower-large-itm-mlm-itc"
export MMEI_EMBEDDING_ENDPOINT="http://${host_ip}:$EMM_BRIDGETOWER_PORT"
export MM_EMBEDDING_PORT_MICROSERVICE=6000
export MILVUS_RETRIEVER_PORT=7000
export LVM_PORT=9399
export LLAVA_SERVER_PORT=8399
export LVM_MODEL_ID="llava-hf/llava-1.5-7b-hf"
export LVM_ENDPOINT="http://${host_ip}:$LLAVA_SERVER_PORT"
export MEGA_SERVICE_PORT=8888
export BACKEND_SERVICE_ENDPOINT="http://${host_ip}:$MEGA_SERVICE_PORT/v1/multimodalqna"
export UI_PORT=5173
}
function start_services() {
echo "Starting services..."
cd $WORKPATH/docker_compose/intel/cpu/xeon
docker compose -f compose_milvus.yaml up -d > ${LOG_PATH}/start_services_with_compose.log
sleep 2m
echo "Services started."
}
function prepare_data() {
cd $LOG_PATH
echo "Downloading image and video"
wget https://github.com/docarray/docarray/blob/main/tests/toydata/image-data/apple.png?raw=true -O ${image_fn}
wget http://commondatastorage.googleapis.com/gtv-videos-bucket/sample/WeAreGoingOnBullrun.mp4 -O ${video_fn}
wget https://raw.githubusercontent.com/opea-project/GenAIComps/v1.1/comps/retrievers/redis/data/nke-10k-2023.pdf -O ${pdf_fn}
echo "Writing caption file"
echo "This is an apple." > ${caption_fn}
sleep 1m
}
function validate_service() {
local URL="$1"
local EXPECTED_RESULT="$2"
local SERVICE_NAME="$3"
local DOCKER_NAME="$4"
local INPUT_DATA="$5"
if [[ $SERVICE_NAME == *"dataprep-multimodal-milvus-transcript"* ]]; then
cd $LOG_PATH
HTTP_RESPONSE=$(curl --silent --write-out "HTTPSTATUS:%{http_code}" -X POST -F "files=@./${video_fn}" -H 'Content-Type: multipart/form-data' "$URL")
elif [[ $SERVICE_NAME == *"dataprep-multimodal-milvus-caption"* ]]; then
cd $LOG_PATH
HTTP_RESPONSE=$(curl --silent --write-out "HTTPSTATUS:%{http_code}" -X POST -F "files=@./${image_fn}" -H 'Content-Type: multipart/form-data' "$URL")
elif [[ $SERVICE_NAME == *"dataprep-multimodal-milvus-ingest"* ]]; then
cd $LOG_PATH
HTTP_RESPONSE=$(curl --silent --write-out "HTTPSTATUS:%{http_code}" -X POST -F "files=@./${image_fn}" -F "files=@./apple.txt" -H 'Content-Type: multipart/form-data' "$URL")
elif [[ $SERVICE_NAME == *"dataprep-multimodal-milvus-pdf"* ]]; then
cd $LOG_PATH
HTTP_RESPONSE=$(curl --silent --write-out "HTTPSTATUS:%{http_code}" -X POST -F "files=@./${pdf_fn}" -H 'Content-Type: multipart/form-data' "$URL")
elif [[ $SERVICE_NAME == *"dataprep_get"* ]]; then
HTTP_RESPONSE=$(curl --silent --write-out "HTTPSTATUS:%{http_code}" -X POST -H 'Content-Type: application/json' "$URL")
elif [[ $SERVICE_NAME == *"dataprep_del"* ]]; then
HTTP_RESPONSE=$(curl --silent --write-out "HTTPSTATUS:%{http_code}" -X POST -d '{"file_path": "apple.txt"}' -H 'Content-Type: application/json' "$URL")
else
HTTP_RESPONSE=$(curl --silent --write-out "HTTPSTATUS:%{http_code}" -X POST -d "$INPUT_DATA" -H 'Content-Type: application/json' "$URL")
fi
HTTP_STATUS=$(echo $HTTP_RESPONSE | tr -d '\n' | sed -e 's/.*HTTPSTATUS://')
RESPONSE_BODY=$(echo $HTTP_RESPONSE | sed -e 's/HTTPSTATUS\:.*//g')
docker logs ${DOCKER_NAME} >> ${LOG_PATH}/${SERVICE_NAME}.log
# check response status
if [ "$HTTP_STATUS" -ne "200" ]; then
echo "[ $SERVICE_NAME ] HTTP status is not 200. Received status was $HTTP_STATUS"
exit 1
else
echo "[ $SERVICE_NAME ] HTTP status is 200. Checking content..."
fi
# check response body
if [[ "$RESPONSE_BODY" != *"$EXPECTED_RESULT"* ]]; then
echo "[ $SERVICE_NAME ] Content does not match the expected result: $RESPONSE_BODY"
exit 1
else
echo "[ $SERVICE_NAME ] Content is as expected."
fi
sleep 1s
}
function validate_microservices() {
# Check if the microservices are running correctly.
# Bridgetower Embedding Server
echo "Validating embedding-multimodal-bridgetower"
validate_service \
"http://${host_ip}:${EMM_BRIDGETOWER_PORT}/v1/encode" \
'"embedding":[' \
"embedding-multimodal-bridgetower" \
"embedding-multimodal-bridgetower" \
'{"text":"This is example"}'
validate_service \
"http://${host_ip}:${EMM_BRIDGETOWER_PORT}/v1/encode" \
'"embedding":[' \
"embedding-multimodal-bridgetower" \
"embedding-multimodal-bridgetower" \
'{"text":"This is example", "img_b64_str": "iVBORw0KGgoAAAANSUhEUgAAAAoAAAAKCAYAAACNMs+9AAAAFUlEQVR42mP8/5+hnoEIwDiqkL4KAcT9GO0U4BxoAAAAAElFTkSuQmCC"}'
# embedding microservice
echo "Validating embedding"
validate_service \
"http://${host_ip}:$MM_EMBEDDING_PORT_MICROSERVICE/v1/embeddings" \
'"embedding":[' \
"embedding" \
"embedding" \
'{"text" : "This is some sample text."}'
validate_service \
"http://${host_ip}:$MM_EMBEDDING_PORT_MICROSERVICE/v1/embeddings" \
'"embedding":[' \
"embedding" \
"embedding" \
'{"text": {"text" : "This is some sample text."}, "image" : {"url": "https://github.com/docarray/docarray/blob/main/tests/toydata/image-data/apple.png?raw=true"}}'
sleep 1m # retrieval can't curl as expected, try to wait for more time
# test data prep
echo "Validating Data Prep with Generating Transcript for Video"
validate_service \
"${DATAPREP_GEN_TRANSCRIPT_SERVICE_ENDPOINT}" \
"Data preparation succeeded" \
"dataprep-multimodal-milvus-transcript" \
"dataprep-multimodal-milvus"
echo "Validating Data Prep with Image & Caption Ingestion"
validate_service \
"${DATAPREP_INGEST_SERVICE_ENDPOINT}" \
"Data preparation succeeded" \
"dataprep-multimodal-milvus-ingest" \
"dataprep-multimodal-milvus"
echo "Validating Data Prep with PDF"
validate_service \
"${DATAPREP_INGEST_SERVICE_ENDPOINT}" \
"Data preparation succeeded" \
"dataprep-multimodal-milvus-pdf" \
"dataprep-multimodal-milvus"
echo "Validating get file returns mp4"
validate_service \
"${DATAPREP_GET_FILE_ENDPOINT}" \
'.mp4' \
"dataprep_get" \
"dataprep-multimodal-milvus"
echo "Validating get file returns png"
validate_service \
"${DATAPREP_GET_FILE_ENDPOINT}" \
'.png' \
"dataprep_get" \
"dataprep-multimodal-milvus"
sleep 1m
# multimodal retrieval microservice
echo "Validating retriever-milvus"
your_embedding=$(python3 -c "import random; embedding = [random.uniform(-1, 1) for _ in range(512)]; print(embedding)")
validate_service \
"http://${host_ip}:${MILVUS_RETRIEVER_PORT}/v1/retrieval" \
"retrieved_docs" \
"retriever-milvus" \
"retriever-milvus" \
"{\"text\":\"test\",\"embedding\":${your_embedding}}"
echo "Wait for lvm-llava service to be ready"
check_service_ready "lvm-llava" 10 "Uvicorn running on http://"
# llava server
echo "Evaluating lvm-llava"
validate_service \
"http://${host_ip}:${LLAVA_SERVER_PORT}/generate" \
'"text":' \
"lvm-llava" \
"lvm-llava" \
'{"prompt":"Describe the image please.", "img_b64_str": "iVBORw0KGgoAAAANSUhEUgAAAAoAAAAKCAYAAACNMs+9AAAAFUlEQVR42mP8/5+hnoEIwDiqkL4KAcT9GO0U4BxoAAAAAElFTkSuQmCC"}'
echo "Evaluating lvm-llava with a list of images"
validate_service \
"http://${host_ip}:${LLAVA_SERVER_PORT}/generate" \
'"text":' \
"lvm-llava" \
"lvm-llava" \
'{"prompt":"Describe the image please.", "img_b64_str": ["iVBORw0KGgoAAAANSUhEUgAAAAoAAAAKCAYAAACNMs+9AAAAFUlEQVR42mP8/5+hnoEIwDiqkL4KAcT9GO0U4BxoAAAAAElFTkSuQmCC","iVBORw0KGgoAAAANSUhEUgAAAAoAAAAKCAYAAACNMs+9AAAAFUlEQVR42mNkYPhfz0AEYBxVSF+FAP5FDvcfRYWgAAAAAElFTkSuQmCC"]}'
# lvm
echo "Evaluating lvm"
validate_service \
"http://${host_ip}:${LVM_PORT}/v1/lvm" \
'"text":"' \
"lvm" \
"lvm" \
'{"retrieved_docs": [], "initial_query": "What is this?", "top_n": 1, "metadata": [{"b64_img_str": "iVBORw0KGgoAAAANSUhEUgAAAAoAAAAKCAYAAACNMs+9AAAAFUlEQVR42mP8/5+hnoEIwDiqkL4KAcT9GO0U4BxoAAAAAElFTkSuQmCC", "transcript_for_inference": "yellow image", "video_id": "8c7461df-b373-4a00-8696-9a2234359fe0", "time_of_frame_ms":"37000000", "source_video":"WeAreGoingOnBullrun_8c7461df-b373-4a00-8696-9a2234359fe0.mp4"}], "chat_template":"The caption of the image is: '\''{context}'\''. {question}"}'
# data prep requiring lvm
echo "Validating Data Prep with Generating Caption for Image"
validate_service \
"${DATAPREP_GEN_CAPTION_SERVICE_ENDPOINT}" \
"Data preparation succeeded" \
"dataprep-multimodal-milvus-caption" \
"dataprep-multimodal-milvus"
sleep 3m
}
function validate_megaservice() {
# Curl the Mega Service with retrieval
echo "Validating megaservice with first query"
validate_service \
"http://${host_ip}:${MEGA_SERVICE_PORT}/v1/multimodalqna" \
'"time_of_frame_ms":' \
"multimodalqna" \
"multimodalqna-backend-server" \
'{"messages": "What is the revenue of Nike in 2023?"}'
echo "Validating megaservice with first audio query"
validate_service \
"http://${host_ip}:${MEGA_SERVICE_PORT}/v1/multimodalqna" \
'"time_of_frame_ms":' \
"multimodalqna" \
"multimodalqna-backend-server" \
'{"messages": [{"role": "user", "content": [{"type": "audio", "audio": "UklGRigAAABXQVZFZm10IBIAAAABAAEARKwAAIhYAQACABAAAABkYXRhAgAAAAEA"}]}]}'
echo "Validating megaservice with first query with an image"
validate_service \
"http://${host_ip}:${MEGA_SERVICE_PORT}/v1/multimodalqna" \
'"time_of_frame_ms":' \
"multimodalqna" \
"multimodalqna-backend-server" \
'{"messages": [{"role": "user", "content": [{"type": "text", "text": "Find a similar image"}, {"type": "image_url", "image_url": {"url": "https://www.ilankelman.org/stopsigns/australia.jpg"}}]}]}'
echo "Validating megaservice with follow-up query"
validate_service \
"http://${host_ip}:${MEGA_SERVICE_PORT}/v1/multimodalqna" \
'"content":"' \
"multimodalqna" \
"multimodalqna-backend-server" \
'{"messages": [{"role": "user", "content": [{"type": "audio", "audio": "UklGRigAAABXQVZFZm10IBIAAAABAAEARKwAAIhYAQACABAAAABkYXRhAgAAAAEA"}, {"type": "image_url", "image_url": {"url": "https://www.ilankelman.org/stopsigns/australia.jpg"}}]}, {"role": "assistant", "content": "opea project! "}, {"role": "user", "content": [{"type": "text", "text": "goodbye"}]}]}'
echo "Validating megaservice with multiple text queries"
validate_service \
"http://${host_ip}:${MEGA_SERVICE_PORT}/v1/multimodalqna" \
'"content":"' \
"multimodalqna" \
"multimodalqna-backend-server" \
'{"messages": [{"role": "user", "content": [{"type": "text", "text": "hello, "}]}, {"role": "assistant", "content": "opea project! "}, {"role": "user", "content": [{"type": "text", "text": "goodbye"}]}]}'
}
function validate_delete {
echo "Validating data prep delete files"
export DATAPREP_DELETE_FILE_ENDPOINT="http://${host_ip}:6007/v1/dataprep/delete"
validate_service \
"${DATAPREP_DELETE_FILE_ENDPOINT}" \
'{"status":true}' \
"dataprep_del" \
"dataprep-multimodal-milvus"
}
function delete_data() {
cd $LOG_PATH
echo "Deleting image, video, and caption"
rm -rf ${image_fn}
rm -rf ${video_fn}
rm -rf ${pdf_fn}
rm -rf ${caption_fn}
}
function stop_docker() {
echo "Stopping docker..."
cd $WORKPATH/docker_compose/intel/cpu/xeon
docker compose -f compose_milvus.yaml stop && docker compose -f compose_milvus.yaml rm -f
echo "Docker stopped."
}
function main() {
setup_env
stop_docker
if [[ "$IMAGE_REPO" == "opea" ]]; then build_docker_images; fi
start_time=$(date +%s)
start_services
end_time=$(date +%s)
duration=$((end_time-start_time))
echo "Mega service start duration is $duration s" && sleep 1s
prepare_data
validate_microservices
echo "==== microservices validated ===="
validate_megaservice
echo "==== megaservice validated ===="
validate_delete
echo "==== delete validated ===="
delete_data
stop_docker
echo y | docker system prune
}
main