Signed-off-by: Shifani Rajabose <srajabose@habana.ai> Signed-off-by: Pallavi Jaini <pallavi.jaini@intel.com>
391 lines
16 KiB
Bash
391 lines
16 KiB
Bash
#!/bin/bash
|
|
# Copyright (C) 2024 Intel Corporation
|
|
# SPDX-License-Identifier: Apache-2.0
|
|
|
|
set -x
|
|
IMAGE_REPO=${IMAGE_REPO:-"opea"}
|
|
IMAGE_TAG=${IMAGE_TAG:-"latest"}
|
|
echo "REGISTRY=IMAGE_REPO=${IMAGE_REPO}"
|
|
echo "TAG=IMAGE_TAG=${IMAGE_TAG}"
|
|
export REGISTRY=${IMAGE_REPO}
|
|
export TAG=${IMAGE_TAG}
|
|
|
|
WORKPATH=$(dirname "$PWD")
|
|
LOG_PATH="$WORKPATH/tests"
|
|
ip_address=$(hostname -I | awk '{print $1}')
|
|
|
|
export image_fn="apple.png"
|
|
export video_fn="WeAreGoingOnBullrun.mp4"
|
|
export caption_fn="apple.txt"
|
|
export pdf_fn="nke-10k-2023.pdf"
|
|
|
|
function check_service_ready() {
|
|
local container_name="$1"
|
|
local max_retries="$2"
|
|
local log_string="$3"
|
|
|
|
for i in $(seq 1 "$max_retries")
|
|
do
|
|
service_logs=$(docker logs "$container_name" 2>&1 | grep "$log_string" || true)
|
|
if [[ -z "$service_logs" ]]; then
|
|
echo "The $container_name service is not ready yet, sleeping 30s..."
|
|
sleep 30s
|
|
else
|
|
echo "$container_name service is ready"
|
|
break
|
|
fi
|
|
done
|
|
|
|
if [[ $i -ge $max_retries ]]; then
|
|
echo "WARNING: Max retries reached when waiting for the $container_name service to be ready"
|
|
docker logs "$container_name" >> "${LOG_PATH}/$container_name_file.log"
|
|
fi
|
|
}
|
|
|
|
function build_docker_images() {
|
|
opea_branch=${opea_branch:-"main"}
|
|
# If the opea_branch isn't main, replace the git clone branch in Dockerfile.
|
|
if [[ "${opea_branch}" != "main" ]]; then
|
|
cd $WORKPATH
|
|
OLD_STRING="RUN git clone --depth 1 https://github.com/opea-project/GenAIComps.git"
|
|
NEW_STRING="RUN git clone --depth 1 --branch ${opea_branch} https://github.com/opea-project/GenAIComps.git"
|
|
find . -type f -name "Dockerfile*" | while read -r file; do
|
|
echo "Processing file: $file"
|
|
sed -i "s|$OLD_STRING|$NEW_STRING|g" "$file"
|
|
done
|
|
fi
|
|
|
|
cd $WORKPATH/docker_image_build
|
|
git clone --depth 1 --branch ${opea_branch} https://github.com/opea-project/GenAIComps.git
|
|
|
|
echo "Build all the images with --no-cache, check docker_image_build.log for details..."
|
|
service_list="multimodalqna multimodalqna-ui embedding-multimodal-bridgetower embedding retriever lvm-llava lvm dataprep whisper"
|
|
docker compose -f build.yaml build ${service_list} --no-cache > ${LOG_PATH}/docker_image_build.log
|
|
docker images && sleep 1s
|
|
}
|
|
|
|
function setup_env() {
|
|
export host_ip=${ip_address}
|
|
export MM_EMBEDDING_SERVICE_HOST_IP=${host_ip}
|
|
export MM_RETRIEVER_SERVICE_HOST_IP=${host_ip}
|
|
export LVM_SERVICE_HOST_IP=${host_ip}
|
|
export MEGA_SERVICE_HOST_IP=${host_ip}
|
|
export HUGGINGFACEHUB_API_TOKEN=${HUGGINGFACEHUB_API_TOKEN}
|
|
export WHISPER_PORT=7066
|
|
export MAX_IMAGES=1
|
|
export WHISPER_MODEL="base"
|
|
export WHISPER_SERVER_ENDPOINT="http://${host_ip}:${WHISPER_PORT}/v1/asr"
|
|
export COLLECTION_NAME="LangChainCollection"
|
|
export MILVUS_HOST=${host_ip}
|
|
export DATAPREP_MMR_PORT=6007
|
|
export DATAPREP_INGEST_SERVICE_ENDPOINT="http://${host_ip}:${DATAPREP_MMR_PORT}/v1/dataprep/ingest"
|
|
export DATAPREP_GEN_TRANSCRIPT_SERVICE_ENDPOINT="http://${host_ip}:${DATAPREP_MMR_PORT}/v1/dataprep/generate_transcripts"
|
|
export DATAPREP_GEN_CAPTION_SERVICE_ENDPOINT="http://${host_ip}:${DATAPREP_MMR_PORT}/v1/dataprep/generate_captions"
|
|
export DATAPREP_GET_FILE_ENDPOINT="http://${host_ip}:${DATAPREP_MMR_PORT}/v1/dataprep/get"
|
|
export DATAPREP_DELETE_FILE_ENDPOINT="http://${host_ip}:${DATAPREP_MMR_PORT}/v1/dataprep/delete"
|
|
export EMM_BRIDGETOWER_PORT=6006
|
|
export BRIDGE_TOWER_EMBEDDING=true
|
|
export EMBEDDING_MODEL_ID="BridgeTower/bridgetower-large-itm-mlm-itc"
|
|
export MMEI_EMBEDDING_ENDPOINT="http://${host_ip}:$EMM_BRIDGETOWER_PORT"
|
|
export MM_EMBEDDING_PORT_MICROSERVICE=6000
|
|
export MILVUS_RETRIEVER_PORT=7000
|
|
export LVM_PORT=9399
|
|
export LLAVA_SERVER_PORT=8399
|
|
export LVM_MODEL_ID="llava-hf/llava-1.5-7b-hf"
|
|
export LVM_ENDPOINT="http://${host_ip}:$LLAVA_SERVER_PORT"
|
|
export MEGA_SERVICE_PORT=8888
|
|
export BACKEND_SERVICE_ENDPOINT="http://${host_ip}:$MEGA_SERVICE_PORT/v1/multimodalqna"
|
|
export UI_PORT=5173
|
|
}
|
|
|
|
|
|
function start_services() {
|
|
echo "Starting services..."
|
|
cd $WORKPATH/docker_compose/intel/cpu/xeon
|
|
docker compose -f compose_milvus.yaml up -d > ${LOG_PATH}/start_services_with_compose.log
|
|
sleep 2m
|
|
echo "Services started."
|
|
}
|
|
|
|
function prepare_data() {
|
|
cd $LOG_PATH
|
|
echo "Downloading image and video"
|
|
wget https://github.com/docarray/docarray/blob/main/tests/toydata/image-data/apple.png?raw=true -O ${image_fn}
|
|
wget http://commondatastorage.googleapis.com/gtv-videos-bucket/sample/WeAreGoingOnBullrun.mp4 -O ${video_fn}
|
|
wget https://raw.githubusercontent.com/opea-project/GenAIComps/v1.1/comps/retrievers/redis/data/nke-10k-2023.pdf -O ${pdf_fn}
|
|
echo "Writing caption file"
|
|
echo "This is an apple." > ${caption_fn}
|
|
sleep 1m
|
|
}
|
|
|
|
|
|
function validate_service() {
|
|
local URL="$1"
|
|
local EXPECTED_RESULT="$2"
|
|
local SERVICE_NAME="$3"
|
|
local DOCKER_NAME="$4"
|
|
local INPUT_DATA="$5"
|
|
|
|
if [[ $SERVICE_NAME == *"dataprep-multimodal-milvus-transcript"* ]]; then
|
|
cd $LOG_PATH
|
|
HTTP_RESPONSE=$(curl --silent --write-out "HTTPSTATUS:%{http_code}" -X POST -F "files=@./${video_fn}" -H 'Content-Type: multipart/form-data' "$URL")
|
|
elif [[ $SERVICE_NAME == *"dataprep-multimodal-milvus-caption"* ]]; then
|
|
cd $LOG_PATH
|
|
HTTP_RESPONSE=$(curl --silent --write-out "HTTPSTATUS:%{http_code}" -X POST -F "files=@./${image_fn}" -H 'Content-Type: multipart/form-data' "$URL")
|
|
elif [[ $SERVICE_NAME == *"dataprep-multimodal-milvus-ingest"* ]]; then
|
|
cd $LOG_PATH
|
|
HTTP_RESPONSE=$(curl --silent --write-out "HTTPSTATUS:%{http_code}" -X POST -F "files=@./${image_fn}" -F "files=@./apple.txt" -H 'Content-Type: multipart/form-data' "$URL")
|
|
elif [[ $SERVICE_NAME == *"dataprep-multimodal-milvus-pdf"* ]]; then
|
|
cd $LOG_PATH
|
|
HTTP_RESPONSE=$(curl --silent --write-out "HTTPSTATUS:%{http_code}" -X POST -F "files=@./${pdf_fn}" -H 'Content-Type: multipart/form-data' "$URL")
|
|
elif [[ $SERVICE_NAME == *"dataprep_get"* ]]; then
|
|
HTTP_RESPONSE=$(curl --silent --write-out "HTTPSTATUS:%{http_code}" -X POST -H 'Content-Type: application/json' "$URL")
|
|
elif [[ $SERVICE_NAME == *"dataprep_del"* ]]; then
|
|
HTTP_RESPONSE=$(curl --silent --write-out "HTTPSTATUS:%{http_code}" -X POST -d '{"file_path": "apple.txt"}' -H 'Content-Type: application/json' "$URL")
|
|
else
|
|
HTTP_RESPONSE=$(curl --silent --write-out "HTTPSTATUS:%{http_code}" -X POST -d "$INPUT_DATA" -H 'Content-Type: application/json' "$URL")
|
|
fi
|
|
HTTP_STATUS=$(echo $HTTP_RESPONSE | tr -d '\n' | sed -e 's/.*HTTPSTATUS://')
|
|
RESPONSE_BODY=$(echo $HTTP_RESPONSE | sed -e 's/HTTPSTATUS\:.*//g')
|
|
|
|
docker logs ${DOCKER_NAME} >> ${LOG_PATH}/${SERVICE_NAME}.log
|
|
|
|
# check response status
|
|
if [ "$HTTP_STATUS" -ne "200" ]; then
|
|
echo "[ $SERVICE_NAME ] HTTP status is not 200. Received status was $HTTP_STATUS"
|
|
exit 1
|
|
else
|
|
echo "[ $SERVICE_NAME ] HTTP status is 200. Checking content..."
|
|
fi
|
|
# check response body
|
|
if [[ "$RESPONSE_BODY" != *"$EXPECTED_RESULT"* ]]; then
|
|
echo "[ $SERVICE_NAME ] Content does not match the expected result: $RESPONSE_BODY"
|
|
exit 1
|
|
else
|
|
echo "[ $SERVICE_NAME ] Content is as expected."
|
|
fi
|
|
|
|
sleep 1s
|
|
}
|
|
|
|
function validate_microservices() {
|
|
# Check if the microservices are running correctly.
|
|
|
|
# Bridgetower Embedding Server
|
|
echo "Validating embedding-multimodal-bridgetower"
|
|
validate_service \
|
|
"http://${host_ip}:${EMM_BRIDGETOWER_PORT}/v1/encode" \
|
|
'"embedding":[' \
|
|
"embedding-multimodal-bridgetower" \
|
|
"embedding-multimodal-bridgetower" \
|
|
'{"text":"This is example"}'
|
|
|
|
validate_service \
|
|
"http://${host_ip}:${EMM_BRIDGETOWER_PORT}/v1/encode" \
|
|
'"embedding":[' \
|
|
"embedding-multimodal-bridgetower" \
|
|
"embedding-multimodal-bridgetower" \
|
|
'{"text":"This is example", "img_b64_str": "iVBORw0KGgoAAAANSUhEUgAAAAoAAAAKCAYAAACNMs+9AAAAFUlEQVR42mP8/5+hnoEIwDiqkL4KAcT9GO0U4BxoAAAAAElFTkSuQmCC"}'
|
|
|
|
# embedding microservice
|
|
echo "Validating embedding"
|
|
validate_service \
|
|
"http://${host_ip}:$MM_EMBEDDING_PORT_MICROSERVICE/v1/embeddings" \
|
|
'"embedding":[' \
|
|
"embedding" \
|
|
"embedding" \
|
|
'{"text" : "This is some sample text."}'
|
|
|
|
validate_service \
|
|
"http://${host_ip}:$MM_EMBEDDING_PORT_MICROSERVICE/v1/embeddings" \
|
|
'"embedding":[' \
|
|
"embedding" \
|
|
"embedding" \
|
|
'{"text": {"text" : "This is some sample text."}, "image" : {"url": "https://github.com/docarray/docarray/blob/main/tests/toydata/image-data/apple.png?raw=true"}}'
|
|
|
|
sleep 1m # retrieval can't curl as expected, try to wait for more time
|
|
|
|
# test data prep
|
|
echo "Validating Data Prep with Generating Transcript for Video"
|
|
validate_service \
|
|
"${DATAPREP_GEN_TRANSCRIPT_SERVICE_ENDPOINT}" \
|
|
"Data preparation succeeded" \
|
|
"dataprep-multimodal-milvus-transcript" \
|
|
"dataprep-multimodal-milvus"
|
|
|
|
echo "Validating Data Prep with Image & Caption Ingestion"
|
|
validate_service \
|
|
"${DATAPREP_INGEST_SERVICE_ENDPOINT}" \
|
|
"Data preparation succeeded" \
|
|
"dataprep-multimodal-milvus-ingest" \
|
|
"dataprep-multimodal-milvus"
|
|
|
|
echo "Validating Data Prep with PDF"
|
|
validate_service \
|
|
"${DATAPREP_INGEST_SERVICE_ENDPOINT}" \
|
|
"Data preparation succeeded" \
|
|
"dataprep-multimodal-milvus-pdf" \
|
|
"dataprep-multimodal-milvus"
|
|
|
|
echo "Validating get file returns mp4"
|
|
validate_service \
|
|
"${DATAPREP_GET_FILE_ENDPOINT}" \
|
|
'.mp4' \
|
|
"dataprep_get" \
|
|
"dataprep-multimodal-milvus"
|
|
|
|
echo "Validating get file returns png"
|
|
validate_service \
|
|
"${DATAPREP_GET_FILE_ENDPOINT}" \
|
|
'.png' \
|
|
"dataprep_get" \
|
|
"dataprep-multimodal-milvus"
|
|
|
|
sleep 1m
|
|
|
|
# multimodal retrieval microservice
|
|
echo "Validating retriever-milvus"
|
|
your_embedding=$(python3 -c "import random; embedding = [random.uniform(-1, 1) for _ in range(512)]; print(embedding)")
|
|
validate_service \
|
|
"http://${host_ip}:${MILVUS_RETRIEVER_PORT}/v1/retrieval" \
|
|
"retrieved_docs" \
|
|
"retriever-milvus" \
|
|
"retriever-milvus" \
|
|
"{\"text\":\"test\",\"embedding\":${your_embedding}}"
|
|
|
|
echo "Wait for lvm-llava service to be ready"
|
|
check_service_ready "lvm-llava" 10 "Uvicorn running on http://"
|
|
|
|
# llava server
|
|
echo "Evaluating lvm-llava"
|
|
validate_service \
|
|
"http://${host_ip}:${LLAVA_SERVER_PORT}/generate" \
|
|
'"text":' \
|
|
"lvm-llava" \
|
|
"lvm-llava" \
|
|
'{"prompt":"Describe the image please.", "img_b64_str": "iVBORw0KGgoAAAANSUhEUgAAAAoAAAAKCAYAAACNMs+9AAAAFUlEQVR42mP8/5+hnoEIwDiqkL4KAcT9GO0U4BxoAAAAAElFTkSuQmCC"}'
|
|
|
|
echo "Evaluating lvm-llava with a list of images"
|
|
validate_service \
|
|
"http://${host_ip}:${LLAVA_SERVER_PORT}/generate" \
|
|
'"text":' \
|
|
"lvm-llava" \
|
|
"lvm-llava" \
|
|
'{"prompt":"Describe the image please.", "img_b64_str": ["iVBORw0KGgoAAAANSUhEUgAAAAoAAAAKCAYAAACNMs+9AAAAFUlEQVR42mP8/5+hnoEIwDiqkL4KAcT9GO0U4BxoAAAAAElFTkSuQmCC","iVBORw0KGgoAAAANSUhEUgAAAAoAAAAKCAYAAACNMs+9AAAAFUlEQVR42mNkYPhfz0AEYBxVSF+FAP5FDvcfRYWgAAAAAElFTkSuQmCC"]}'
|
|
|
|
# lvm
|
|
echo "Evaluating lvm"
|
|
validate_service \
|
|
"http://${host_ip}:${LVM_PORT}/v1/lvm" \
|
|
'"text":"' \
|
|
"lvm" \
|
|
"lvm" \
|
|
'{"retrieved_docs": [], "initial_query": "What is this?", "top_n": 1, "metadata": [{"b64_img_str": "iVBORw0KGgoAAAANSUhEUgAAAAoAAAAKCAYAAACNMs+9AAAAFUlEQVR42mP8/5+hnoEIwDiqkL4KAcT9GO0U4BxoAAAAAElFTkSuQmCC", "transcript_for_inference": "yellow image", "video_id": "8c7461df-b373-4a00-8696-9a2234359fe0", "time_of_frame_ms":"37000000", "source_video":"WeAreGoingOnBullrun_8c7461df-b373-4a00-8696-9a2234359fe0.mp4"}], "chat_template":"The caption of the image is: '\''{context}'\''. {question}"}'
|
|
|
|
# data prep requiring lvm
|
|
echo "Validating Data Prep with Generating Caption for Image"
|
|
validate_service \
|
|
"${DATAPREP_GEN_CAPTION_SERVICE_ENDPOINT}" \
|
|
"Data preparation succeeded" \
|
|
"dataprep-multimodal-milvus-caption" \
|
|
"dataprep-multimodal-milvus"
|
|
|
|
sleep 3m
|
|
}
|
|
|
|
function validate_megaservice() {
|
|
# Curl the Mega Service with retrieval
|
|
echo "Validating megaservice with first query"
|
|
validate_service \
|
|
"http://${host_ip}:${MEGA_SERVICE_PORT}/v1/multimodalqna" \
|
|
'"time_of_frame_ms":' \
|
|
"multimodalqna" \
|
|
"multimodalqna-backend-server" \
|
|
'{"messages": "What is the revenue of Nike in 2023?"}'
|
|
|
|
echo "Validating megaservice with first audio query"
|
|
validate_service \
|
|
"http://${host_ip}:${MEGA_SERVICE_PORT}/v1/multimodalqna" \
|
|
'"time_of_frame_ms":' \
|
|
"multimodalqna" \
|
|
"multimodalqna-backend-server" \
|
|
'{"messages": [{"role": "user", "content": [{"type": "audio", "audio": "UklGRigAAABXQVZFZm10IBIAAAABAAEARKwAAIhYAQACABAAAABkYXRhAgAAAAEA"}]}]}'
|
|
|
|
echo "Validating megaservice with first query with an image"
|
|
validate_service \
|
|
"http://${host_ip}:${MEGA_SERVICE_PORT}/v1/multimodalqna" \
|
|
'"time_of_frame_ms":' \
|
|
"multimodalqna" \
|
|
"multimodalqna-backend-server" \
|
|
'{"messages": [{"role": "user", "content": [{"type": "text", "text": "Find a similar image"}, {"type": "image_url", "image_url": {"url": "https://www.ilankelman.org/stopsigns/australia.jpg"}}]}]}'
|
|
|
|
echo "Validating megaservice with follow-up query"
|
|
validate_service \
|
|
"http://${host_ip}:${MEGA_SERVICE_PORT}/v1/multimodalqna" \
|
|
'"content":"' \
|
|
"multimodalqna" \
|
|
"multimodalqna-backend-server" \
|
|
'{"messages": [{"role": "user", "content": [{"type": "audio", "audio": "UklGRigAAABXQVZFZm10IBIAAAABAAEARKwAAIhYAQACABAAAABkYXRhAgAAAAEA"}, {"type": "image_url", "image_url": {"url": "https://www.ilankelman.org/stopsigns/australia.jpg"}}]}, {"role": "assistant", "content": "opea project! "}, {"role": "user", "content": [{"type": "text", "text": "goodbye"}]}]}'
|
|
|
|
echo "Validating megaservice with multiple text queries"
|
|
validate_service \
|
|
"http://${host_ip}:${MEGA_SERVICE_PORT}/v1/multimodalqna" \
|
|
'"content":"' \
|
|
"multimodalqna" \
|
|
"multimodalqna-backend-server" \
|
|
'{"messages": [{"role": "user", "content": [{"type": "text", "text": "hello, "}]}, {"role": "assistant", "content": "opea project! "}, {"role": "user", "content": [{"type": "text", "text": "goodbye"}]}]}'
|
|
}
|
|
|
|
function validate_delete {
|
|
echo "Validating data prep delete files"
|
|
export DATAPREP_DELETE_FILE_ENDPOINT="http://${host_ip}:6007/v1/dataprep/delete"
|
|
validate_service \
|
|
"${DATAPREP_DELETE_FILE_ENDPOINT}" \
|
|
'{"status":true}' \
|
|
"dataprep_del" \
|
|
"dataprep-multimodal-milvus"
|
|
}
|
|
|
|
function delete_data() {
|
|
cd $LOG_PATH
|
|
echo "Deleting image, video, and caption"
|
|
rm -rf ${image_fn}
|
|
rm -rf ${video_fn}
|
|
rm -rf ${pdf_fn}
|
|
rm -rf ${caption_fn}
|
|
}
|
|
|
|
function stop_docker() {
|
|
echo "Stopping docker..."
|
|
cd $WORKPATH/docker_compose/intel/cpu/xeon
|
|
docker compose -f compose_milvus.yaml stop && docker compose -f compose_milvus.yaml rm -f
|
|
echo "Docker stopped."
|
|
}
|
|
|
|
function main() {
|
|
|
|
setup_env
|
|
stop_docker
|
|
if [[ "$IMAGE_REPO" == "opea" ]]; then build_docker_images; fi
|
|
start_time=$(date +%s)
|
|
start_services
|
|
end_time=$(date +%s)
|
|
duration=$((end_time-start_time))
|
|
echo "Mega service start duration is $duration s" && sleep 1s
|
|
prepare_data
|
|
|
|
validate_microservices
|
|
echo "==== microservices validated ===="
|
|
validate_megaservice
|
|
echo "==== megaservice validated ===="
|
|
validate_delete
|
|
echo "==== delete validated ===="
|
|
|
|
delete_data
|
|
stop_docker
|
|
echo y | docker system prune
|
|
|
|
}
|
|
|
|
main
|