292 lines
11 KiB
Python
292 lines
11 KiB
Python
# Copyright (C) 2024 Intel Corporation
|
|
# SPDX-License-Identifier: Apache-2.0
|
|
|
|
import ast
|
|
import base64
|
|
import json
|
|
import logging
|
|
import os
|
|
from urllib.parse import urlparse
|
|
|
|
import gradio as gr
|
|
import requests
|
|
import uvicorn
|
|
from fastapi import FastAPI
|
|
from langchain_community.document_loaders import Docx2txtLoader, PyPDFLoader, UnstructuredURLLoader
|
|
|
|
# Configure logging
|
|
logging.basicConfig(level=logging.INFO)
|
|
logger = logging.getLogger(__name__)
|
|
|
|
|
|
class DocSumUI:
|
|
def __init__(self):
|
|
"""Initialize the DocSumUI class with accepted file types, headers, and backend service endpoint."""
|
|
self.ACCEPTED_TEXT_FILE_TYPES = [".pdf", ".doc", ".docx"]
|
|
self.ACCEPTED_AUDIO_FILE_TYPES = [".mp3", ".wav"]
|
|
self.ACCEPTED_VIDEO_FILE_TYPES = [".mp4"]
|
|
self.HEADERS = {"Content-Type": "application/json"}
|
|
self.BACKEND_SERVICE_ENDPOINT = os.getenv("BACKEND_SERVICE_ENDPOINT", "http://localhost:8888/v1/docsum")
|
|
|
|
def is_valid_url(self, url):
|
|
try:
|
|
result = urlparse(url)
|
|
return all([result.scheme, result.netloc])
|
|
except ValueError:
|
|
return False
|
|
|
|
def read_url(self, url):
|
|
"""Read and process the content of a url.
|
|
|
|
Args:
|
|
url: The url to be read as a document.
|
|
|
|
Returns:
|
|
str: The content of the website or an error message if the url is unsupported.
|
|
"""
|
|
|
|
self.page_content = ""
|
|
|
|
logger.info(">>> Reading url: %s", url)
|
|
if self.is_valid_url(url=url):
|
|
os.environ["no_proxy"] = f"{os.environ.get('no_proxy', '')},{url}".strip(",")
|
|
try:
|
|
loader = UnstructuredURLLoader([url])
|
|
page = loader.load()
|
|
self.page_content = [content.page_content for content in page][0]
|
|
except Exception as e:
|
|
msg = f"There was an error trying to read '{url}' --> '{e}'\nTry adding the domain name to your `no_proxy` variable and try again. Example: example.com*"
|
|
logger.error(msg)
|
|
else:
|
|
msg = f"Invalid URL '{url}'. Make sure the link provided is a valid URL"
|
|
logger.error(msg)
|
|
return msg
|
|
|
|
return self.page_content
|
|
|
|
def process_response(self, response):
|
|
if response.status_code == 200:
|
|
try:
|
|
# Check if the specific log path is in the response text
|
|
if "/logs/LLMChain/final_output" in response.text:
|
|
# Extract the relevant part of the response
|
|
temp = ast.literal_eval(
|
|
[
|
|
i.split("data: ")[1]
|
|
for i in response.text.split("\n\n")
|
|
if "/logs/LLMChain/final_output" in i
|
|
][0]
|
|
)["ops"]
|
|
|
|
# Find the final output value
|
|
final_output = [i["value"] for i in temp if i["path"] == "/logs/LLMChain/final_output"][0]
|
|
return final_output["text"]
|
|
else:
|
|
# Perform string replacements to clean the response text
|
|
cleaned_text = response.text
|
|
replacements = [
|
|
("'\n\ndata: b'", ""),
|
|
("data: b' ", ""),
|
|
("</s>'\n\ndata: [DONE]\n\n", ""),
|
|
("\n\ndata: b", ""),
|
|
("'\n\n", ""),
|
|
("'\n", ""),
|
|
('''\'"''', ""),
|
|
]
|
|
for old, new in replacements:
|
|
cleaned_text = cleaned_text.replace(old, new)
|
|
return cleaned_text
|
|
except (IndexError, KeyError, ValueError) as e:
|
|
# Handle potential errors during parsing
|
|
logger.error("Error parsing response: %s", e)
|
|
return response.text
|
|
|
|
def generate_summary(self, document, document_type="text"):
|
|
"""Generate a summary for the given document content.
|
|
|
|
Args:
|
|
document (str): The content or path of the document.
|
|
document_type (str): The type of the document (default is "text").
|
|
|
|
Returns:
|
|
str: The generated summary or an error message.
|
|
"""
|
|
logger.info(">>> BACKEND_SERVICE_ENDPOINT - %s", self.BACKEND_SERVICE_ENDPOINT)
|
|
|
|
data = {"max_tokens": 256, "type": document_type, "messages": ""}
|
|
|
|
if os.path.exists(document):
|
|
file_header = "text/plain"
|
|
file_ext = os.path.splitext(document)[-1]
|
|
if file_ext == ".pdf":
|
|
file_header = "application/pdf"
|
|
elif file_ext in [".doc", ".docx"]:
|
|
file_header = "application/octet-stream"
|
|
elif file_ext in self.ACCEPTED_AUDIO_FILE_TYPES + self.ACCEPTED_VIDEO_FILE_TYPES:
|
|
file_header = f"{document_type}/{file_ext[-3:]}"
|
|
files = {"files": (os.path.basename(document), open(document, "rb"), file_header)}
|
|
try:
|
|
response = requests.post(
|
|
url=self.BACKEND_SERVICE_ENDPOINT,
|
|
headers={},
|
|
files=files,
|
|
data=data,
|
|
proxies={"http_proxy": os.environ["http_proxy"], "https_proxy": os.environ["https_proxy"]},
|
|
)
|
|
|
|
return self.process_response(response)
|
|
|
|
except requests.exceptions.RequestException as e:
|
|
logger.error("Request exception: %s", e)
|
|
return str(e)
|
|
|
|
else:
|
|
data["messages"] = document
|
|
try:
|
|
response = requests.post(
|
|
url=self.BACKEND_SERVICE_ENDPOINT,
|
|
headers=self.HEADERS,
|
|
data=json.dumps(data),
|
|
proxies={"http_proxy": os.environ["http_proxy"], "https_proxy": os.environ["https_proxy"]},
|
|
)
|
|
|
|
return self.process_response(response)
|
|
|
|
except requests.exceptions.RequestException as e:
|
|
logger.error("Request exception: %s", e)
|
|
return str(e)
|
|
|
|
return str(response.status_code)
|
|
|
|
def create_upload_ui(self, label, file_types, document_type="text"):
|
|
"""Create a Gradio UI for file uploads.
|
|
|
|
Args:
|
|
label (str): The label for the upload button.
|
|
file_types (list): The list of accepted file types.
|
|
document_type (str): The document type (text, audio, or video). Default is text.
|
|
|
|
Returns:
|
|
gr.Blocks: The Gradio Blocks object representing the upload UI.
|
|
"""
|
|
logger.info(">>> Creating upload UI for label: %s", label)
|
|
with gr.Blocks() as upload_ui:
|
|
with gr.Row():
|
|
with gr.Column():
|
|
upload_btn = gr.UploadButton(label=label, file_count="single", file_types=file_types)
|
|
with gr.Column():
|
|
generated_text = gr.TextArea(
|
|
label="Text Summary", placeholder="Summarized text will be displayed here"
|
|
)
|
|
upload_btn.upload(
|
|
lambda file: self.generate_summary(file, document_type=document_type),
|
|
upload_btn,
|
|
generated_text,
|
|
)
|
|
return upload_ui
|
|
|
|
def render(self):
|
|
"""Render the Gradio UI for the DocSum application.
|
|
|
|
Returns:
|
|
gr.Blocks: The Gradio Blocks object representing the UI.
|
|
"""
|
|
logger.info(">>> Rendering Gradio UI")
|
|
# Plain text UI
|
|
with gr.Blocks() as text_ui:
|
|
with gr.Row():
|
|
with gr.Column():
|
|
input_text = gr.TextArea(
|
|
label="Please paste content for summarization",
|
|
placeholder="Paste the text information you need to summarize",
|
|
)
|
|
submit_btn = gr.Button("Generate Summary")
|
|
with gr.Column():
|
|
generated_text = gr.TextArea(
|
|
label="Text Summary", placeholder="Summarized text will be displayed here"
|
|
)
|
|
submit_btn.click(fn=self.generate_summary, inputs=[input_text], outputs=[generated_text])
|
|
|
|
with gr.Blocks() as url_ui:
|
|
# URL text UI
|
|
with gr.Row():
|
|
with gr.Column():
|
|
input_text = gr.TextArea(
|
|
label="Please paste a URL for summarization",
|
|
placeholder="Paste a URL for the information you need to summarize",
|
|
)
|
|
submit_btn = gr.Button("Generate Summary")
|
|
with gr.Column():
|
|
generated_text = gr.TextArea(
|
|
label="Text Summary", placeholder="Summarized text will be displayed here"
|
|
)
|
|
submit_btn.click(
|
|
lambda input_text: self.generate_summary(self.read_url(input_text)),
|
|
inputs=input_text,
|
|
outputs=generated_text,
|
|
)
|
|
|
|
# File Upload UI
|
|
file_ui = self.create_upload_ui(
|
|
label=f"Please upload a document ({', '.join(self.ACCEPTED_TEXT_FILE_TYPES)})",
|
|
file_types=self.ACCEPTED_TEXT_FILE_TYPES,
|
|
)
|
|
|
|
# Audio Upload UI
|
|
audio_ui = self.create_upload_ui(
|
|
label=f"Please upload audio file ({', '.join(self.ACCEPTED_AUDIO_FILE_TYPES)})",
|
|
file_types=self.ACCEPTED_AUDIO_FILE_TYPES,
|
|
document_type="audio",
|
|
)
|
|
|
|
# Video Upload UI
|
|
video_ui = self.create_upload_ui(
|
|
label=f"Please upload video file ({', '.join(self.ACCEPTED_VIDEO_FILE_TYPES)})",
|
|
file_types=self.ACCEPTED_VIDEO_FILE_TYPES,
|
|
document_type="video",
|
|
)
|
|
|
|
# Render all the UI in separate tabs
|
|
with gr.Blocks() as self.demo:
|
|
gr.Markdown("# Doc Summary")
|
|
with gr.Tabs():
|
|
with gr.TabItem("Paste Text"):
|
|
text_ui.render()
|
|
with gr.TabItem("Upload file"):
|
|
file_ui.render()
|
|
with gr.TabItem("Upload Audio"):
|
|
audio_ui.render()
|
|
with gr.TabItem("Upload Video"):
|
|
video_ui.render()
|
|
# with gr.TabItem("Enter URL"):
|
|
# url_ui.render()
|
|
|
|
return self.demo
|
|
|
|
|
|
app = FastAPI()
|
|
|
|
demo = DocSumUI().render()
|
|
|
|
demo.queue()
|
|
|
|
app = gr.mount_gradio_app(app, demo, path="/")
|
|
|
|
if __name__ == "__main__":
|
|
import argparse
|
|
|
|
import nltk
|
|
|
|
parser = argparse.ArgumentParser()
|
|
parser.add_argument("--host", type=str, default="0.0.0.0")
|
|
parser.add_argument("--port", type=int, default=5173)
|
|
|
|
args = parser.parse_args()
|
|
logger.info(">>> Starting server at %s:%d", args.host, args.port)
|
|
|
|
# Needed for UnstructuredURLLoader when reading content from a URL
|
|
nltk.download("punkt_tab")
|
|
nltk.download("averaged_perceptron_tagger_eng")
|
|
|
|
uvicorn.run(app, host=args.host, port=args.port)
|