Files
GenAIExamples/AudioQnA/audioqna_multilang.py
Wang, Kai Lawrence 8fe19291c8 [AudioQnA] Enable vLLM and set it as default LLM serving (#1657)
Signed-off-by: Wang, Kai Lawrence <kai.lawrence.wang@intel.com>
Co-authored-by: pre-commit-ci[bot] <66853113+pre-commit-ci[bot]@users.noreply.github.com>
2025-03-14 09:56:33 +08:00

136 lines
5.5 KiB
Python

# Copyright (C) 2024 Intel Corporation
# SPDX-License-Identifier: Apache-2.0
import base64
import os
from comps import MegaServiceEndpoint, MicroService, ServiceOrchestrator, ServiceRoleType, ServiceType
from comps.cores.proto.api_protocol import AudioChatCompletionRequest, ChatCompletionResponse
from comps.cores.proto.docarray import LLMParams
from fastapi import Request
MEGA_SERVICE_PORT = int(os.getenv("MEGA_SERVICE_PORT", 8888))
WHISPER_SERVER_HOST_IP = os.getenv("WHISPER_SERVER_HOST_IP", "0.0.0.0")
WHISPER_SERVER_PORT = int(os.getenv("WHISPER_SERVER_PORT", 7066))
GPT_SOVITS_SERVER_HOST_IP = os.getenv("GPT_SOVITS_SERVER_HOST_IP", "0.0.0.0")
GPT_SOVITS_SERVER_PORT = int(os.getenv("GPT_SOVITS_SERVER_PORT", 9088))
LLM_SERVER_HOST_IP = os.getenv("LLM_SERVER_HOST_IP", "0.0.0.0")
LLM_SERVER_PORT = int(os.getenv("LLM_SERVER_PORT", 8888))
LLM_MODEL_ID = os.getenv("LLM_MODEL_ID", "meta-llama/Meta-Llama-3-8B-Instruct")
def align_inputs(self, inputs, cur_node, runtime_graph, llm_parameters_dict, **kwargs):
if self.services[cur_node].service_type == ServiceType.LLM:
# convert TGI/vLLM to unified OpenAI /v1/chat/completions format
next_inputs = {}
next_inputs["model"] = LLM_MODEL_ID
next_inputs["messages"] = [{"role": "user", "content": inputs["asr_result"]}]
next_inputs["max_tokens"] = llm_parameters_dict["max_tokens"]
next_inputs["top_p"] = llm_parameters_dict["top_p"]
next_inputs["stream"] = inputs["stream"] # False as default
next_inputs["frequency_penalty"] = inputs["frequency_penalty"]
# next_inputs["presence_penalty"] = inputs["presence_penalty"]
# next_inputs["repetition_penalty"] = inputs["repetition_penalty"]
next_inputs["temperature"] = inputs["temperature"]
inputs = next_inputs
elif self.services[cur_node].service_type == ServiceType.TTS:
next_inputs = {}
next_inputs["text"] = inputs["choices"][0]["message"]["content"]
next_inputs["text_language"] = kwargs["tts_text_language"] if "tts_text_language" in kwargs else "zh"
inputs = next_inputs
return inputs
def align_outputs(self, data, cur_node, inputs, runtime_graph, llm_parameters_dict, **kwargs):
if self.services[cur_node].service_type == ServiceType.TTS:
audio_base64 = base64.b64encode(data).decode("utf-8")
return {"byte_str": audio_base64}
return data
class AudioQnAService:
def __init__(self, host="0.0.0.0", port=8000):
self.host = host
self.port = port
ServiceOrchestrator.align_inputs = align_inputs
ServiceOrchestrator.align_outputs = align_outputs
self.megaservice = ServiceOrchestrator()
self.endpoint = str(MegaServiceEndpoint.AUDIO_QNA)
def add_remote_service(self):
asr = MicroService(
name="asr",
host=WHISPER_SERVER_HOST_IP,
port=WHISPER_SERVER_PORT,
# endpoint="/v1/audio/transcriptions",
endpoint="/v1/asr",
use_remote_service=True,
service_type=ServiceType.ASR,
)
llm = MicroService(
name="llm",
host=LLM_SERVER_HOST_IP,
port=LLM_SERVER_PORT,
endpoint="/v1/chat/completions",
use_remote_service=True,
service_type=ServiceType.LLM,
)
tts = MicroService(
name="tts",
host=GPT_SOVITS_SERVER_HOST_IP,
port=GPT_SOVITS_SERVER_PORT,
# endpoint="/v1/audio/speech",
endpoint="/",
use_remote_service=True,
service_type=ServiceType.TTS,
)
self.megaservice.add(asr).add(llm).add(tts)
self.megaservice.flow_to(asr, llm)
self.megaservice.flow_to(llm, tts)
async def handle_request(self, request: Request):
data = await request.json()
chat_request = AudioChatCompletionRequest.parse_obj(data)
parameters = LLMParams(
# relatively lower max_tokens for audio conversation
max_tokens=chat_request.max_tokens if chat_request.max_tokens else 128,
top_k=chat_request.top_k if chat_request.top_k else 10,
top_p=chat_request.top_p if chat_request.top_p else 0.95,
temperature=chat_request.temperature if chat_request.temperature else 0.01,
frequency_penalty=chat_request.frequency_penalty if chat_request.frequency_penalty else 0.0,
presence_penalty=chat_request.presence_penalty if chat_request.presence_penalty else 0.0,
repetition_penalty=chat_request.repetition_penalty if chat_request.repetition_penalty else 1.03,
stream=False, # TODO add stream LLM output as input to TTS
)
result_dict, runtime_graph = await self.megaservice.schedule(
initial_inputs={"audio": chat_request.audio}, llm_parameters=parameters
)
last_node = runtime_graph.all_leaves()[-1]
response = result_dict[last_node]["byte_str"]
return response
def start(self):
self.service = MicroService(
self.__class__.__name__,
service_role=ServiceRoleType.MEGASERVICE,
host=self.host,
port=self.port,
endpoint=self.endpoint,
input_datatype=AudioChatCompletionRequest,
output_datatype=ChatCompletionResponse,
)
self.service.add_route(self.endpoint, self.handle_request, methods=["POST"])
self.service.start()
if __name__ == "__main__":
audioqna = AudioQnAService(port=MEGA_SERVICE_PORT)
audioqna.add_remote_service()
audioqna.start()