Per the proposed changes in this [RFC](https://github.com/opea-project/docs/blob/main/community/rfcs/24-10-02-GenAIExamples-001-Image_and_Audio_Support_in_MultimodalQnA.md)'s Phase 2 plan, this PR adds support for image queries, PDF ingestion and display, and dynamic ports. There are also some bug fixes. This PR goes with [this one in GenAIComps](https://github.com/opea-project/GenAIComps/pull/1134). Signed-off-by: Melanie Buehler <melanie.h.buehler@intel.com> Co-authored-by: Liang Lv <liang1.lv@intel.com>
387 lines
17 KiB
Python
387 lines
17 KiB
Python
# Copyright (C) 2024 Intel Corporation
|
|
# SPDX-License-Identifier: Apache-2.0
|
|
|
|
import base64
|
|
import json
|
|
import os
|
|
from io import BytesIO
|
|
|
|
import requests
|
|
from comps import MegaServiceEndpoint, MicroService, ServiceOrchestrator, ServiceRoleType, ServiceType
|
|
from comps.cores.proto.api_protocol import (
|
|
ChatCompletionRequest,
|
|
ChatCompletionResponse,
|
|
ChatCompletionResponseChoice,
|
|
ChatMessage,
|
|
UsageInfo,
|
|
)
|
|
from comps.cores.proto.docarray import ImageDoc, LLMParams, TextDoc, TextImageDoc
|
|
from fastapi import Request
|
|
from fastapi.responses import JSONResponse, StreamingResponse
|
|
from PIL import Image
|
|
|
|
MEGA_SERVICE_PORT = int(os.getenv("MEGA_SERVICE_PORT", 8888))
|
|
MM_EMBEDDING_SERVICE_HOST_IP = os.getenv("MM_EMBEDDING_SERVICE_HOST_IP", "0.0.0.0")
|
|
MM_EMBEDDING_PORT_MICROSERVICE = int(os.getenv("MM_EMBEDDING_PORT_MICROSERVICE", 6000))
|
|
MM_RETRIEVER_SERVICE_HOST_IP = os.getenv("MM_RETRIEVER_SERVICE_HOST_IP", "0.0.0.0")
|
|
MM_RETRIEVER_SERVICE_PORT = int(os.getenv("MM_RETRIEVER_SERVICE_PORT", 7000))
|
|
LVM_SERVICE_HOST_IP = os.getenv("LVM_SERVICE_HOST_IP", "0.0.0.0")
|
|
LVM_SERVICE_PORT = int(os.getenv("LVM_PORT", 9399))
|
|
WHISPER_PORT = int(os.getenv("WHISPER_PORT", 7066))
|
|
WHISPER_SERVER_ENDPOINT = os.getenv("WHISPER_SERVER_ENDPOINT", "http://0.0.0.0:$WHISPER_PORT/v1/asr")
|
|
|
|
|
|
def align_inputs(self, inputs, cur_node, runtime_graph, llm_parameters_dict, **kwargs):
|
|
if self.services[cur_node].service_type == ServiceType.EMBEDDING:
|
|
if "text" in inputs:
|
|
input_text = inputs["text"]["text"] if isinstance(inputs["text"], dict) else inputs["text"]
|
|
if "image" in inputs:
|
|
input_image = inputs["image"]["base64_image"] if isinstance(inputs["image"], dict) else inputs["image"]
|
|
if "text" in inputs and "image" in inputs:
|
|
text_doc = TextDoc(text=input_text)
|
|
image_doc = ImageDoc(base64_image=input_image)
|
|
inputs = TextImageDoc(text=text_doc, image=image_doc).dict()
|
|
elif "image" in inputs:
|
|
inputs = ImageDoc(base64_image=input_image).dict()
|
|
elif "text" in inputs:
|
|
inputs = TextDoc(text=input_text).dict()
|
|
return inputs
|
|
|
|
|
|
class MultimodalQnAService:
|
|
|
|
def __init__(self, host="0.0.0.0", port=8000):
|
|
self.host = host
|
|
self.port = port
|
|
self._role_labels = self._get_role_labels()
|
|
ServiceOrchestrator.align_inputs = align_inputs
|
|
self.lvm_megaservice = ServiceOrchestrator()
|
|
self.megaservice = ServiceOrchestrator()
|
|
self.endpoint = str(MegaServiceEndpoint.MULTIMODAL_QNA)
|
|
|
|
def add_remote_service(self):
|
|
mm_embedding = MicroService(
|
|
name="embedding",
|
|
host=MM_EMBEDDING_SERVICE_HOST_IP,
|
|
port=MM_EMBEDDING_PORT_MICROSERVICE,
|
|
endpoint="/v1/embeddings",
|
|
use_remote_service=True,
|
|
service_type=ServiceType.EMBEDDING,
|
|
)
|
|
|
|
mm_retriever = MicroService(
|
|
name="retriever",
|
|
host=MM_RETRIEVER_SERVICE_HOST_IP,
|
|
port=MM_RETRIEVER_SERVICE_PORT,
|
|
endpoint="/v1/retrieval",
|
|
use_remote_service=True,
|
|
service_type=ServiceType.RETRIEVER,
|
|
)
|
|
lvm = MicroService(
|
|
name="lvm",
|
|
host=LVM_SERVICE_HOST_IP,
|
|
port=LVM_SERVICE_PORT,
|
|
endpoint="/v1/lvm",
|
|
use_remote_service=True,
|
|
service_type=ServiceType.LVM,
|
|
)
|
|
|
|
# for mmrag megaservice
|
|
self.megaservice.add(mm_embedding).add(mm_retriever).add(lvm)
|
|
self.megaservice.flow_to(mm_embedding, mm_retriever)
|
|
self.megaservice.flow_to(mm_retriever, lvm)
|
|
|
|
# for lvm megaservice
|
|
self.lvm_megaservice.add(lvm)
|
|
|
|
def _get_role_labels(self):
|
|
"""Returns a dictionary of role labels that are used in the chat prompt based on the LVM_MODEL_ID
|
|
environment variable.
|
|
|
|
The function defines the role labels used by the llava-1.5, llava-v1.6-vicuna,
|
|
llava-v1.6-mistral, and llava-interleave models, and then defaults to use "USER:" and "ASSISTANT:" if the
|
|
LVM_MODEL_ID is not one of those.
|
|
"""
|
|
lvm_model = os.getenv("LVM_MODEL_ID", "")
|
|
|
|
# Default to labels used by llava-1.5 and llava-v1.6-vicuna models
|
|
role_labels = {"user": "USER:", "assistant": "ASSISTANT:"}
|
|
|
|
if "llava-interleave" in lvm_model:
|
|
role_labels["user"] = "<|im_start|>user"
|
|
role_labels["assistant"] = "<|im_end|><|im_start|>assistant"
|
|
elif "llava-v1.6-mistral" in lvm_model:
|
|
role_labels["user"] = "[INST]"
|
|
role_labels["assistant"] = " [/INST]"
|
|
elif "llava-1.5" not in lvm_model and "llava-v1.6-vicuna" not in lvm_model:
|
|
print(f"[ MultimodalQnAGateway ] Using default role labels for prompt formatting: {role_labels}")
|
|
|
|
return role_labels
|
|
|
|
# this overrides _handle_message method of Gateway
|
|
def _handle_message(self, messages):
|
|
images = []
|
|
audios = []
|
|
b64_types = {}
|
|
messages_dicts = []
|
|
decoded_audio_input = ""
|
|
if isinstance(messages, str):
|
|
prompt = messages
|
|
else:
|
|
messages_dict = {}
|
|
system_prompt = ""
|
|
prompt = ""
|
|
role_label_dict = self._role_labels
|
|
for message in messages:
|
|
msg_role = message["role"]
|
|
messages_dict = {}
|
|
if msg_role == "system":
|
|
system_prompt = message["content"]
|
|
elif msg_role == "user":
|
|
if type(message["content"]) == list:
|
|
# separate each media type and store accordingly
|
|
text = ""
|
|
text_list = [item["text"] for item in message["content"] if item["type"] == "text"]
|
|
text += "\n".join(text_list)
|
|
image_list = [
|
|
item["image_url"]["url"] for item in message["content"] if item["type"] == "image_url"
|
|
]
|
|
audios = [item["audio"] for item in message["content"] if item["type"] == "audio"]
|
|
if audios:
|
|
# translate audio to text. From this point forward, audio is treated like text
|
|
decoded_audio_input = self.convert_audio_to_text(audios)
|
|
b64_types["audio"] = decoded_audio_input
|
|
|
|
if text and not audios and not image_list:
|
|
messages_dict[msg_role] = text
|
|
elif audios and not text and not image_list:
|
|
messages_dict[msg_role] = decoded_audio_input
|
|
else:
|
|
messages_dict[msg_role] = (text, decoded_audio_input, image_list)
|
|
|
|
else:
|
|
messages_dict[msg_role] = message["content"]
|
|
messages_dicts.append(messages_dict)
|
|
elif msg_role == "assistant":
|
|
messages_dict[msg_role] = message["content"]
|
|
messages_dicts.append(messages_dict)
|
|
else:
|
|
raise ValueError(f"Unknown role: {msg_role}")
|
|
|
|
if system_prompt:
|
|
prompt = system_prompt + "\n"
|
|
for i, messages_dict in enumerate(messages_dicts):
|
|
for role, message in messages_dict.items():
|
|
if isinstance(message, tuple):
|
|
text, decoded_audio_input, image_list = message
|
|
# Remove empty items from the image list
|
|
image_list = [x for x in image_list if x]
|
|
# Add image indicators within the conversation
|
|
image_tags = "<image>\n" * len(image_list)
|
|
if i == 0:
|
|
# do not add role for the very first message.
|
|
# this will be added by llava_server
|
|
if text:
|
|
prompt += image_tags + text + "\n"
|
|
elif decoded_audio_input:
|
|
prompt += image_tags + decoded_audio_input + "\n"
|
|
else:
|
|
if text:
|
|
prompt += role_label_dict[role] + " " + image_tags + text + "\n"
|
|
elif decoded_audio_input:
|
|
prompt += role_label_dict[role] + " " + image_tags + decoded_audio_input + "\n"
|
|
else:
|
|
prompt += role_label_dict[role] + " " + image_tags
|
|
|
|
if image_list:
|
|
for img in image_list:
|
|
# URL
|
|
if img.startswith("http://") or img.startswith("https://"):
|
|
response = requests.get(img)
|
|
image = Image.open(BytesIO(response.content)).convert("RGBA")
|
|
image_bytes = BytesIO()
|
|
image.save(image_bytes, format="PNG")
|
|
img_b64_str = base64.b64encode(image_bytes.getvalue()).decode()
|
|
# Local Path
|
|
elif os.path.exists(img):
|
|
image = Image.open(img).convert("RGBA")
|
|
image_bytes = BytesIO()
|
|
image.save(image_bytes, format="PNG")
|
|
img_b64_str = base64.b64encode(image_bytes.getvalue()).decode()
|
|
# Bytes
|
|
else:
|
|
img_b64_str = img
|
|
|
|
images.append(img_b64_str)
|
|
|
|
elif isinstance(message, str):
|
|
if i == 0:
|
|
# do not add role for the very first message.
|
|
# this will be added by llava_server
|
|
if message:
|
|
prompt += message + "\n"
|
|
else:
|
|
if message:
|
|
prompt += role_label_dict[role] + " " + message + "\n"
|
|
else:
|
|
prompt += role_label_dict[role]
|
|
|
|
if images:
|
|
b64_types["image"] = images
|
|
|
|
# If the query has multiple media types, return all types
|
|
if prompt and b64_types:
|
|
return prompt, b64_types
|
|
else:
|
|
return prompt
|
|
|
|
def convert_audio_to_text(self, audio):
|
|
# translate audio to text by passing in base64 encoded audio to ASR
|
|
if isinstance(audio, dict):
|
|
input_dict = {"audio": audio["audio"][0]}
|
|
else:
|
|
input_dict = {"audio": audio[0]}
|
|
|
|
response = requests.post(WHISPER_SERVER_ENDPOINT, data=json.dumps(input_dict))
|
|
|
|
if response.status_code != 200:
|
|
return JSONResponse(
|
|
status_code=503, content={"message": "Unable to convert audio to text. {}".format(response.text)}
|
|
)
|
|
|
|
response = response.json()
|
|
return response["asr_result"]
|
|
|
|
async def handle_request(self, request: Request):
|
|
"""MultimodalQnA accepts input queries as text, images, and/or audio.
|
|
|
|
The messages in the request can be a single
|
|
message (which would be assumed to be a first query from the user) or back and forth conversation between the
|
|
user and the assistant.
|
|
Audio queries are converted to text before being sent to the megaservice and the translated text is returned
|
|
as part of the metadata in the response.
|
|
First queries are sent to the full Multimodal megaserivce, which includes using the embedding microservice and
|
|
retriever, in order to get relevant information from the vector store to send to the LVM along with the user's
|
|
query. Follow up queries are sent directly to the LVM without searching for more similar information from the
|
|
vector store.
|
|
"""
|
|
data = await request.json()
|
|
stream_opt = bool(data.get("stream", False))
|
|
if stream_opt:
|
|
print("[ MultimodalQnAService ] stream=True not used, this has not support stream yet!")
|
|
stream_opt = False
|
|
chat_request = ChatCompletionRequest.model_validate(data)
|
|
num_messages = len(data["messages"]) if isinstance(data["messages"], list) else 1
|
|
messages = self._handle_message(chat_request.messages)
|
|
decoded_audio_input = ""
|
|
|
|
if num_messages > 1:
|
|
# This is a follow up query, go to LVM
|
|
cur_megaservice = self.lvm_megaservice
|
|
if isinstance(messages, tuple):
|
|
prompt, b64_types = messages
|
|
if "audio" in b64_types:
|
|
# for metadata storage purposes
|
|
decoded_audio_input = b64_types["audio"]
|
|
if "image" in b64_types:
|
|
initial_inputs = {"prompt": prompt, "image": b64_types["image"]}
|
|
else:
|
|
initial_inputs = {"prompt": prompt, "image": ""}
|
|
else:
|
|
prompt = messages
|
|
initial_inputs = {"prompt": prompt, "image": ""}
|
|
else:
|
|
# This is the first query. Ignore image input
|
|
cur_megaservice = self.megaservice
|
|
if isinstance(messages, tuple):
|
|
prompt, b64_types = messages
|
|
initial_inputs = {"text": prompt}
|
|
if "audio" in b64_types:
|
|
# for metadata storage purposes
|
|
decoded_audio_input = b64_types["audio"]
|
|
if "image" in b64_types and len(b64_types["image"]) > 0:
|
|
# Format initial inputs to match TextImageDoc
|
|
initial_inputs["text"] = {"text": prompt}
|
|
initial_inputs["image"] = {"base64_image": b64_types["image"][0]}
|
|
else:
|
|
initial_inputs = {"text": messages}
|
|
|
|
parameters = LLMParams(
|
|
max_new_tokens=chat_request.max_tokens if chat_request.max_tokens else 1024,
|
|
top_k=chat_request.top_k if chat_request.top_k else 10,
|
|
top_p=chat_request.top_p if chat_request.top_p else 0.95,
|
|
temperature=chat_request.temperature if chat_request.temperature else 0.01,
|
|
frequency_penalty=chat_request.frequency_penalty if chat_request.frequency_penalty else 0.0,
|
|
presence_penalty=chat_request.presence_penalty if chat_request.presence_penalty else 0.0,
|
|
repetition_penalty=chat_request.repetition_penalty if chat_request.repetition_penalty else 1.03,
|
|
stream=stream_opt,
|
|
chat_template=chat_request.chat_template if chat_request.chat_template else None,
|
|
)
|
|
result_dict, runtime_graph = await cur_megaservice.schedule(
|
|
initial_inputs=initial_inputs, llm_parameters=parameters
|
|
)
|
|
for node, response in result_dict.items():
|
|
# the last microservice in this megaservice is LVM.
|
|
# checking if LVM returns StreamingResponse
|
|
# Currently, LVM with LLAVA has not yet supported stream.
|
|
# @TODO: Will need to test this once LVM with LLAVA supports stream
|
|
if (
|
|
isinstance(response, StreamingResponse)
|
|
and node == runtime_graph.all_leaves()[-1]
|
|
and self.megaservice.services[node].service_type == ServiceType.LVM
|
|
):
|
|
return response
|
|
last_node = runtime_graph.all_leaves()[-1]
|
|
|
|
if "text" in result_dict[last_node].keys():
|
|
response = result_dict[last_node]["text"]
|
|
else:
|
|
# text is not in response message
|
|
# something wrong, for example due to empty retrieval results
|
|
if "detail" in result_dict[last_node].keys():
|
|
response = result_dict[last_node]["detail"]
|
|
else:
|
|
response = "The server failed to generate an answer to your query!"
|
|
if "metadata" in result_dict[last_node].keys():
|
|
# from retrieval results
|
|
metadata = result_dict[last_node]["metadata"]
|
|
if decoded_audio_input:
|
|
metadata["audio"] = decoded_audio_input
|
|
else:
|
|
# follow-up question, no retrieval
|
|
if decoded_audio_input:
|
|
metadata = {"audio": decoded_audio_input}
|
|
else:
|
|
metadata = None
|
|
|
|
choices = []
|
|
usage = UsageInfo()
|
|
choices.append(
|
|
ChatCompletionResponseChoice(
|
|
index=0,
|
|
message=ChatMessage(role="assistant", content=response),
|
|
finish_reason="stop",
|
|
metadata=metadata,
|
|
)
|
|
)
|
|
return ChatCompletionResponse(model="multimodalqna", choices=choices, usage=usage)
|
|
|
|
def start(self):
|
|
self.service = MicroService(
|
|
self.__class__.__name__,
|
|
service_role=ServiceRoleType.MEGASERVICE,
|
|
host=self.host,
|
|
port=self.port,
|
|
endpoint=self.endpoint,
|
|
input_datatype=ChatCompletionRequest,
|
|
output_datatype=ChatCompletionResponse,
|
|
)
|
|
self.service.add_route(self.endpoint, self.handle_request, methods=["POST"])
|
|
self.service.start()
|
|
|
|
|
|
if __name__ == "__main__":
|
|
mmragwithvideos = MultimodalQnAService(port=MEGA_SERVICE_PORT)
|
|
mmragwithvideos.add_remote_service()
|
|
mmragwithvideos.start()
|