Files
GenAIExamples/DocIndexRetriever/retrieval_tool.py
minmin-intel a7eced4161 Update AgentQnA and DocIndexRetriever (#1564)
Signed-off-by: minmin-intel <minmin.hou@intel.com>
2025-02-22 09:51:26 +08:00

203 lines
8.3 KiB
Python

# Copyright (C) 2024 Intel Corporation
# SPDX-License-Identifier: Apache-2.0
import argparse
import asyncio
import os
from typing import Union
from comps import MegaServiceEndpoint, MicroService, ServiceOrchestrator, ServiceRoleType, ServiceType
from comps.cores.proto.api_protocol import ChatCompletionRequest, EmbeddingRequest
from comps.cores.proto.docarray import LLMParamsDoc, RerankedDoc, RerankerParms, RetrieverParms, TextDoc
from fastapi import Request
from fastapi.responses import StreamingResponse
MEGA_SERVICE_PORT = os.getenv("MEGA_SERVICE_PORT", 8889)
EMBEDDING_SERVICE_HOST_IP = os.getenv("EMBEDDING_SERVICE_HOST_IP", "0.0.0.0")
EMBEDDING_SERVICE_PORT = os.getenv("EMBEDDING_SERVICE_PORT", 6000)
RETRIEVER_SERVICE_HOST_IP = os.getenv("RETRIEVER_SERVICE_HOST_IP", "0.0.0.0")
RETRIEVER_SERVICE_PORT = os.getenv("RETRIEVER_SERVICE_PORT", 7000)
RERANK_SERVICE_HOST_IP = os.getenv("RERANK_SERVICE_HOST_IP", "0.0.0.0")
RERANK_SERVICE_PORT = os.getenv("RERANK_SERVICE_PORT", 8000)
def align_inputs(self, inputs, cur_node, runtime_graph, llm_parameters_dict, **kwargs):
print(f"Inputs to {cur_node}: {inputs}")
for key, value in kwargs.items():
print(f"{key}: {value}")
return inputs
def align_outputs(self, data, cur_node, inputs, runtime_graph, llm_parameters_dict, **kwargs):
next_data = {}
if self.services[cur_node].service_type == ServiceType.EMBEDDING:
# turn into chat completion request
# next_data = {"text": inputs["input"], "embedding": [item["embedding"] for item in data["data"]]}
print("Assembing output from Embedding for next node...")
print("Inputs to Embedding: ", inputs)
print("Keyword arguments: ")
for key, value in kwargs.items():
print(f"{key}: {value}")
next_data = {
"input": inputs["input"],
"messages": inputs["input"],
"embedding": data, # [item["embedding"] for item in data["data"]],
"k": kwargs["k"] if "k" in kwargs else 4,
"search_type": kwargs["search_type"] if "search_type" in kwargs else "similarity",
"distance_threshold": kwargs["distance_threshold"] if "distance_threshold" in kwargs else None,
"fetch_k": kwargs["fetch_k"] if "fetch_k" in kwargs else 20,
"lambda_mult": kwargs["lambda_mult"] if "lambda_mult" in kwargs else 0.5,
"score_threshold": kwargs["score_threshold"] if "score_threshold" in kwargs else 0.2,
"top_n": kwargs["top_n"] if "top_n" in kwargs else 1,
}
print("Output from Embedding for next node:\n", next_data)
else:
next_data = data
return next_data
class RetrievalToolService:
def __init__(self, host="0.0.0.0", port=8000):
self.host = host
self.port = port
ServiceOrchestrator.align_inputs = align_inputs
ServiceOrchestrator.align_outputs = align_outputs
self.megaservice = ServiceOrchestrator()
self.endpoint = str(MegaServiceEndpoint.RETRIEVALTOOL)
def add_remote_service(self):
embedding = MicroService(
name="embedding",
host=EMBEDDING_SERVICE_HOST_IP,
port=EMBEDDING_SERVICE_PORT,
endpoint="/v1/embeddings",
use_remote_service=True,
service_type=ServiceType.EMBEDDING,
)
retriever = MicroService(
name="retriever",
host=RETRIEVER_SERVICE_HOST_IP,
port=RETRIEVER_SERVICE_PORT,
endpoint="/v1/retrieval",
use_remote_service=True,
service_type=ServiceType.RETRIEVER,
)
rerank = MicroService(
name="rerank",
host=RERANK_SERVICE_HOST_IP,
port=RERANK_SERVICE_PORT,
endpoint="/v1/reranking",
use_remote_service=True,
service_type=ServiceType.RERANK,
)
self.megaservice.add(embedding).add(retriever).add(rerank)
self.megaservice.flow_to(embedding, retriever)
self.megaservice.flow_to(retriever, rerank)
async def handle_request(self, request: Request):
def parser_input(data, TypeClass, key):
chat_request = None
try:
chat_request = TypeClass.parse_obj(data)
query = getattr(chat_request, key)
except:
query = None
return query, chat_request
data = await request.json()
query = None
for key, TypeClass in zip(["text", "input", "messages"], [TextDoc, EmbeddingRequest, ChatCompletionRequest]):
query, chat_request = parser_input(data, TypeClass, key)
if query is not None:
break
if query is None:
raise ValueError(f"Unknown request type: {data}")
if chat_request is None:
raise ValueError(f"Unknown request type: {data}")
if isinstance(chat_request, ChatCompletionRequest):
initial_inputs = {
"messages": query,
"input": query, # has to be input due to embedding expects either input or text
"search_type": chat_request.search_type if chat_request.search_type else "similarity",
"k": chat_request.k if chat_request.k else 4,
"distance_threshold": chat_request.distance_threshold if chat_request.distance_threshold else None,
"fetch_k": chat_request.fetch_k if chat_request.fetch_k else 20,
"lambda_mult": chat_request.lambda_mult if chat_request.lambda_mult else 0.5,
"score_threshold": chat_request.score_threshold if chat_request.score_threshold else 0.2,
"top_n": chat_request.top_n if chat_request.top_n else 1,
}
kwargs = {
"search_type": chat_request.search_type if chat_request.search_type else "similarity",
"k": chat_request.k if chat_request.k else 4,
"distance_threshold": chat_request.distance_threshold if chat_request.distance_threshold else None,
"fetch_k": chat_request.fetch_k if chat_request.fetch_k else 20,
"lambda_mult": chat_request.lambda_mult if chat_request.lambda_mult else 0.5,
"score_threshold": chat_request.score_threshold if chat_request.score_threshold else 0.2,
"top_n": chat_request.top_n if chat_request.top_n else 1,
}
result_dict, runtime_graph = await self.megaservice.schedule(
initial_inputs=initial_inputs,
**kwargs,
)
else:
result_dict, runtime_graph = await self.megaservice.schedule(initial_inputs={"input": query})
last_node = runtime_graph.all_leaves()[-1]
response = result_dict[last_node]
return response
def start(self):
self.service = MicroService(
self.__class__.__name__,
service_role=ServiceRoleType.MEGASERVICE,
host=self.host,
port=self.port,
endpoint=self.endpoint,
input_datatype=Union[TextDoc, EmbeddingRequest, ChatCompletionRequest],
output_datatype=Union[RerankedDoc, LLMParamsDoc],
)
self.service.add_route(self.endpoint, self.handle_request, methods=["POST"])
self.service.start()
def add_remote_service_without_rerank(self):
embedding = MicroService(
name="embedding",
host=EMBEDDING_SERVICE_HOST_IP,
port=EMBEDDING_SERVICE_PORT,
endpoint="/v1/embeddings",
use_remote_service=True,
service_type=ServiceType.EMBEDDING,
)
retriever = MicroService(
name="retriever",
host=RETRIEVER_SERVICE_HOST_IP,
port=RETRIEVER_SERVICE_PORT,
endpoint="/v1/retrieval",
use_remote_service=True,
service_type=ServiceType.RETRIEVER,
)
self.megaservice.add(embedding).add(retriever)
self.megaservice.flow_to(embedding, retriever)
if __name__ == "__main__":
parser = argparse.ArgumentParser()
parser.add_argument("--without-rerank", action="store_true")
args = parser.parse_args()
chatqna = RetrievalToolService(port=MEGA_SERVICE_PORT)
if args.without_rerank:
chatqna.add_remote_service_without_rerank()
else:
chatqna.add_remote_service()
chatqna.start()