414 lines
17 KiB
Python
414 lines
17 KiB
Python
# Copyright (C) 2024 Intel Corporation
|
|
# SPDX-License-Identifier: Apache-2.0
|
|
|
|
import argparse
|
|
import json
|
|
import os
|
|
import re
|
|
|
|
from comps import MegaServiceEndpoint, MicroService, ServiceOrchestrator, ServiceRoleType, ServiceType
|
|
from comps.cores.mega.utils import handle_message
|
|
from comps.cores.proto.api_protocol import (
|
|
ChatCompletionRequest,
|
|
ChatCompletionResponse,
|
|
ChatCompletionResponseChoice,
|
|
ChatMessage,
|
|
UsageInfo,
|
|
)
|
|
from comps.cores.proto.docarray import LLMParams, RerankerParms, RetrieverParms
|
|
from fastapi import Request
|
|
from fastapi.responses import StreamingResponse
|
|
from langchain_core.prompts import PromptTemplate
|
|
|
|
|
|
class ChatTemplate:
|
|
@staticmethod
|
|
def generate_rag_prompt(question, documents):
|
|
context_str = "\n".join(documents)
|
|
if context_str and len(re.findall("[\u4E00-\u9FFF]", context_str)) / len(context_str) >= 0.3:
|
|
# chinese context
|
|
template = """
|
|
### 你将扮演一个乐于助人、尊重他人并诚实的助手,你的目标是帮助用户解答问题。有效地利用来自本地知识库的搜索结果。确保你的回答中只包含相关信息。如果你不确定问题的答案,请避免分享不准确的信息。
|
|
### 搜索结果:{context}
|
|
### 问题:{question}
|
|
### 回答:
|
|
"""
|
|
else:
|
|
template = """
|
|
### You are a helpful, respectful and honest assistant to help the user with questions. \
|
|
Please refer to the search results obtained from the local knowledge base. \
|
|
But be careful to not incorporate the information that you think is not relevant to the question. \
|
|
If you don't know the answer to a question, please don't share false information. \n
|
|
### Search results: {context} \n
|
|
### Question: {question} \n
|
|
### Answer:
|
|
"""
|
|
return template.format(context=context_str, question=question)
|
|
|
|
|
|
MEGA_SERVICE_PORT = int(os.getenv("MEGA_SERVICE_PORT", 8888))
|
|
GUARDRAIL_SERVICE_HOST_IP = os.getenv("GUARDRAIL_SERVICE_HOST_IP", "0.0.0.0")
|
|
GUARDRAIL_SERVICE_PORT = int(os.getenv("GUARDRAIL_SERVICE_PORT", 80))
|
|
EMBEDDING_SERVER_HOST_IP = os.getenv("EMBEDDING_SERVER_HOST_IP", "0.0.0.0")
|
|
EMBEDDING_SERVER_PORT = int(os.getenv("EMBEDDING_SERVER_PORT", 80))
|
|
RETRIEVER_SERVICE_HOST_IP = os.getenv("RETRIEVER_SERVICE_HOST_IP", "0.0.0.0")
|
|
RETRIEVER_SERVICE_PORT = int(os.getenv("RETRIEVER_SERVICE_PORT", 7000))
|
|
RERANK_SERVER_HOST_IP = os.getenv("RERANK_SERVER_HOST_IP", "0.0.0.0")
|
|
RERANK_SERVER_PORT = int(os.getenv("RERANK_SERVER_PORT", 80))
|
|
LLM_SERVER_HOST_IP = os.getenv("LLM_SERVER_HOST_IP", "0.0.0.0")
|
|
LLM_SERVER_PORT = int(os.getenv("LLM_SERVER_PORT", 80))
|
|
LLM_MODEL = os.getenv("LLM_MODEL", "meta-llama/Meta-Llama-3-8B-Instruct")
|
|
|
|
|
|
def align_inputs(self, inputs, cur_node, runtime_graph, llm_parameters_dict, **kwargs):
|
|
if self.services[cur_node].service_type == ServiceType.EMBEDDING:
|
|
inputs["inputs"] = inputs["text"]
|
|
del inputs["text"]
|
|
elif self.services[cur_node].service_type == ServiceType.RETRIEVER:
|
|
# prepare the retriever params
|
|
retriever_parameters = kwargs.get("retriever_parameters", None)
|
|
if retriever_parameters:
|
|
inputs.update(retriever_parameters.dict())
|
|
elif self.services[cur_node].service_type == ServiceType.LLM:
|
|
# convert TGI/vLLM to unified OpenAI /v1/chat/completions format
|
|
next_inputs = {}
|
|
next_inputs["model"] = LLM_MODEL
|
|
next_inputs["messages"] = [{"role": "user", "content": inputs["inputs"]}]
|
|
next_inputs["max_tokens"] = llm_parameters_dict["max_tokens"]
|
|
next_inputs["top_p"] = llm_parameters_dict["top_p"]
|
|
next_inputs["stream"] = inputs["stream"]
|
|
next_inputs["frequency_penalty"] = inputs["frequency_penalty"]
|
|
# next_inputs["presence_penalty"] = inputs["presence_penalty"]
|
|
# next_inputs["repetition_penalty"] = inputs["repetition_penalty"]
|
|
next_inputs["temperature"] = inputs["temperature"]
|
|
inputs = next_inputs
|
|
return inputs
|
|
|
|
|
|
def align_outputs(self, data, cur_node, inputs, runtime_graph, llm_parameters_dict, **kwargs):
|
|
next_data = {}
|
|
if self.services[cur_node].service_type == ServiceType.EMBEDDING:
|
|
assert isinstance(data, list)
|
|
next_data = {"text": inputs["inputs"], "embedding": data[0]}
|
|
elif self.services[cur_node].service_type == ServiceType.RETRIEVER:
|
|
|
|
docs = [doc["text"] for doc in data["retrieved_docs"]]
|
|
|
|
with_rerank = runtime_graph.downstream(cur_node)[0].startswith("rerank")
|
|
if with_rerank and docs:
|
|
# forward to rerank
|
|
# prepare inputs for rerank
|
|
next_data["query"] = data["initial_query"]
|
|
next_data["texts"] = [doc["text"] for doc in data["retrieved_docs"]]
|
|
else:
|
|
# forward to llm
|
|
if not docs and with_rerank:
|
|
# delete the rerank from retriever -> rerank -> llm
|
|
for ds in reversed(runtime_graph.downstream(cur_node)):
|
|
for nds in runtime_graph.downstream(ds):
|
|
runtime_graph.add_edge(cur_node, nds)
|
|
runtime_graph.delete_node_if_exists(ds)
|
|
|
|
# handle template
|
|
# if user provides template, then format the prompt with it
|
|
# otherwise, use the default template
|
|
prompt = data["initial_query"]
|
|
chat_template = llm_parameters_dict["chat_template"]
|
|
if chat_template:
|
|
prompt_template = PromptTemplate.from_template(chat_template)
|
|
input_variables = prompt_template.input_variables
|
|
if sorted(input_variables) == ["context", "question"]:
|
|
prompt = prompt_template.format(question=data["initial_query"], context="\n".join(docs))
|
|
elif input_variables == ["question"]:
|
|
prompt = prompt_template.format(question=data["initial_query"])
|
|
else:
|
|
print(f"{prompt_template} not used, we only support 2 input variables ['question', 'context']")
|
|
prompt = ChatTemplate.generate_rag_prompt(data["initial_query"], docs)
|
|
else:
|
|
prompt = ChatTemplate.generate_rag_prompt(data["initial_query"], docs)
|
|
|
|
next_data["inputs"] = prompt
|
|
|
|
elif self.services[cur_node].service_type == ServiceType.RERANK:
|
|
# rerank the inputs with the scores
|
|
reranker_parameters = kwargs.get("reranker_parameters", None)
|
|
top_n = reranker_parameters.top_n if reranker_parameters else 1
|
|
docs = inputs["texts"]
|
|
reranked_docs = []
|
|
for best_response in data[:top_n]:
|
|
reranked_docs.append(docs[best_response["index"]])
|
|
|
|
# handle template
|
|
# if user provides template, then format the prompt with it
|
|
# otherwise, use the default template
|
|
prompt = inputs["query"]
|
|
chat_template = llm_parameters_dict["chat_template"]
|
|
if chat_template:
|
|
prompt_template = PromptTemplate.from_template(chat_template)
|
|
input_variables = prompt_template.input_variables
|
|
if sorted(input_variables) == ["context", "question"]:
|
|
prompt = prompt_template.format(question=prompt, context="\n".join(reranked_docs))
|
|
elif input_variables == ["question"]:
|
|
prompt = prompt_template.format(question=prompt)
|
|
else:
|
|
print(f"{prompt_template} not used, we only support 2 input variables ['question', 'context']")
|
|
prompt = ChatTemplate.generate_rag_prompt(prompt, reranked_docs)
|
|
else:
|
|
prompt = ChatTemplate.generate_rag_prompt(prompt, reranked_docs)
|
|
|
|
next_data["inputs"] = prompt
|
|
|
|
elif self.services[cur_node].service_type == ServiceType.LLM and not llm_parameters_dict["stream"]:
|
|
next_data["text"] = data["choices"][0]["message"]["content"]
|
|
else:
|
|
next_data = data
|
|
|
|
return next_data
|
|
|
|
|
|
def align_generator(self, gen, **kwargs):
|
|
# OpenAI response format
|
|
# b'data:{"id":"","object":"text_completion","created":1725530204,"model":"meta-llama/Meta-Llama-3-8B-Instruct","system_fingerprint":"2.0.1-native","choices":[{"index":0,"delta":{"role":"assistant","content":"?"},"logprobs":null,"finish_reason":null}]}\n\n'
|
|
for line in gen:
|
|
line = line.decode("utf-8")
|
|
start = line.find("{")
|
|
end = line.rfind("}") + 1
|
|
|
|
json_str = line[start:end]
|
|
try:
|
|
# sometimes yield empty chunk, do a fallback here
|
|
json_data = json.loads(json_str)
|
|
if (
|
|
json_data["choices"][0]["finish_reason"] != "eos_token"
|
|
and "content" in json_data["choices"][0]["delta"]
|
|
):
|
|
yield f"data: {repr(json_data['choices'][0]['delta']['content'].encode('utf-8'))}\n\n"
|
|
except Exception as e:
|
|
yield f"data: {repr(json_str.encode('utf-8'))}\n\n"
|
|
yield "data: [DONE]\n\n"
|
|
|
|
|
|
class ChatQnAService:
|
|
def __init__(self, host="0.0.0.0", port=8000):
|
|
self.host = host
|
|
self.port = port
|
|
ServiceOrchestrator.align_inputs = align_inputs
|
|
ServiceOrchestrator.align_outputs = align_outputs
|
|
ServiceOrchestrator.align_generator = align_generator
|
|
self.megaservice = ServiceOrchestrator()
|
|
self.endpoint = str(MegaServiceEndpoint.CHAT_QNA)
|
|
|
|
def add_remote_service(self):
|
|
|
|
embedding = MicroService(
|
|
name="embedding",
|
|
host=EMBEDDING_SERVER_HOST_IP,
|
|
port=EMBEDDING_SERVER_PORT,
|
|
endpoint="/embed",
|
|
use_remote_service=True,
|
|
service_type=ServiceType.EMBEDDING,
|
|
)
|
|
|
|
retriever = MicroService(
|
|
name="retriever",
|
|
host=RETRIEVER_SERVICE_HOST_IP,
|
|
port=RETRIEVER_SERVICE_PORT,
|
|
endpoint="/v1/retrieval",
|
|
use_remote_service=True,
|
|
service_type=ServiceType.RETRIEVER,
|
|
)
|
|
|
|
rerank = MicroService(
|
|
name="rerank",
|
|
host=RERANK_SERVER_HOST_IP,
|
|
port=RERANK_SERVER_PORT,
|
|
endpoint="/rerank",
|
|
use_remote_service=True,
|
|
service_type=ServiceType.RERANK,
|
|
)
|
|
|
|
llm = MicroService(
|
|
name="llm",
|
|
host=LLM_SERVER_HOST_IP,
|
|
port=LLM_SERVER_PORT,
|
|
endpoint="/v1/chat/completions",
|
|
use_remote_service=True,
|
|
service_type=ServiceType.LLM,
|
|
)
|
|
self.megaservice.add(embedding).add(retriever).add(rerank).add(llm)
|
|
self.megaservice.flow_to(embedding, retriever)
|
|
self.megaservice.flow_to(retriever, rerank)
|
|
self.megaservice.flow_to(rerank, llm)
|
|
|
|
def add_remote_service_without_rerank(self):
|
|
|
|
embedding = MicroService(
|
|
name="embedding",
|
|
host=EMBEDDING_SERVER_HOST_IP,
|
|
port=EMBEDDING_SERVER_PORT,
|
|
endpoint="/embed",
|
|
use_remote_service=True,
|
|
service_type=ServiceType.EMBEDDING,
|
|
)
|
|
|
|
retriever = MicroService(
|
|
name="retriever",
|
|
host=RETRIEVER_SERVICE_HOST_IP,
|
|
port=RETRIEVER_SERVICE_PORT,
|
|
endpoint="/v1/retrieval",
|
|
use_remote_service=True,
|
|
service_type=ServiceType.RETRIEVER,
|
|
)
|
|
|
|
llm = MicroService(
|
|
name="llm",
|
|
host=LLM_SERVER_HOST_IP,
|
|
port=LLM_SERVER_PORT,
|
|
endpoint="/v1/chat/completions",
|
|
use_remote_service=True,
|
|
service_type=ServiceType.LLM,
|
|
)
|
|
self.megaservice.add(embedding).add(retriever).add(llm)
|
|
self.megaservice.flow_to(embedding, retriever)
|
|
self.megaservice.flow_to(retriever, llm)
|
|
|
|
def add_remote_service_with_guardrails(self):
|
|
guardrail_in = MicroService(
|
|
name="guardrail_in",
|
|
host=GUARDRAIL_SERVICE_HOST_IP,
|
|
port=GUARDRAIL_SERVICE_PORT,
|
|
endpoint="/v1/guardrails",
|
|
use_remote_service=True,
|
|
service_type=ServiceType.GUARDRAIL,
|
|
)
|
|
embedding = MicroService(
|
|
name="embedding",
|
|
host=EMBEDDING_SERVER_HOST_IP,
|
|
port=EMBEDDING_SERVER_PORT,
|
|
endpoint="/embed",
|
|
use_remote_service=True,
|
|
service_type=ServiceType.EMBEDDING,
|
|
)
|
|
retriever = MicroService(
|
|
name="retriever",
|
|
host=RETRIEVER_SERVICE_HOST_IP,
|
|
port=RETRIEVER_SERVICE_PORT,
|
|
endpoint="/v1/retrieval",
|
|
use_remote_service=True,
|
|
service_type=ServiceType.RETRIEVER,
|
|
)
|
|
rerank = MicroService(
|
|
name="rerank",
|
|
host=RERANK_SERVER_HOST_IP,
|
|
port=RERANK_SERVER_PORT,
|
|
endpoint="/rerank",
|
|
use_remote_service=True,
|
|
service_type=ServiceType.RERANK,
|
|
)
|
|
llm = MicroService(
|
|
name="llm",
|
|
host=LLM_SERVER_HOST_IP,
|
|
port=LLM_SERVER_PORT,
|
|
endpoint="/v1/chat/completions",
|
|
use_remote_service=True,
|
|
service_type=ServiceType.LLM,
|
|
)
|
|
# guardrail_out = MicroService(
|
|
# name="guardrail_out",
|
|
# host=GUARDRAIL_SERVICE_HOST_IP,
|
|
# port=GUARDRAIL_SERVICE_PORT,
|
|
# endpoint="/v1/guardrails",
|
|
# use_remote_service=True,
|
|
# service_type=ServiceType.GUARDRAIL,
|
|
# )
|
|
# self.megaservice.add(guardrail_in).add(embedding).add(retriever).add(rerank).add(llm).add(guardrail_out)
|
|
self.megaservice.add(guardrail_in).add(embedding).add(retriever).add(rerank).add(llm)
|
|
self.megaservice.flow_to(guardrail_in, embedding)
|
|
self.megaservice.flow_to(embedding, retriever)
|
|
self.megaservice.flow_to(retriever, rerank)
|
|
self.megaservice.flow_to(rerank, llm)
|
|
# self.megaservice.flow_to(llm, guardrail_out)
|
|
|
|
async def handle_request(self, request: Request):
|
|
data = await request.json()
|
|
stream_opt = data.get("stream", True)
|
|
chat_request = ChatCompletionRequest.parse_obj(data)
|
|
prompt = handle_message(chat_request.messages)
|
|
parameters = LLMParams(
|
|
max_tokens=chat_request.max_tokens if chat_request.max_tokens else 1024,
|
|
top_k=chat_request.top_k if chat_request.top_k else 10,
|
|
top_p=chat_request.top_p if chat_request.top_p else 0.95,
|
|
temperature=chat_request.temperature if chat_request.temperature else 0.01,
|
|
frequency_penalty=chat_request.frequency_penalty if chat_request.frequency_penalty else 0.0,
|
|
presence_penalty=chat_request.presence_penalty if chat_request.presence_penalty else 0.0,
|
|
repetition_penalty=chat_request.repetition_penalty if chat_request.repetition_penalty else 1.03,
|
|
stream=stream_opt,
|
|
chat_template=chat_request.chat_template if chat_request.chat_template else None,
|
|
)
|
|
retriever_parameters = RetrieverParms(
|
|
search_type=chat_request.search_type if chat_request.search_type else "similarity",
|
|
k=chat_request.k if chat_request.k else 4,
|
|
distance_threshold=chat_request.distance_threshold if chat_request.distance_threshold else None,
|
|
fetch_k=chat_request.fetch_k if chat_request.fetch_k else 20,
|
|
lambda_mult=chat_request.lambda_mult if chat_request.lambda_mult else 0.5,
|
|
score_threshold=chat_request.score_threshold if chat_request.score_threshold else 0.2,
|
|
)
|
|
reranker_parameters = RerankerParms(
|
|
top_n=chat_request.top_n if chat_request.top_n else 1,
|
|
)
|
|
result_dict, runtime_graph = await self.megaservice.schedule(
|
|
initial_inputs={"text": prompt},
|
|
llm_parameters=parameters,
|
|
retriever_parameters=retriever_parameters,
|
|
reranker_parameters=reranker_parameters,
|
|
)
|
|
for node, response in result_dict.items():
|
|
if isinstance(response, StreamingResponse):
|
|
return response
|
|
last_node = runtime_graph.all_leaves()[-1]
|
|
response = result_dict[last_node]["text"]
|
|
choices = []
|
|
usage = UsageInfo()
|
|
choices.append(
|
|
ChatCompletionResponseChoice(
|
|
index=0,
|
|
message=ChatMessage(role="assistant", content=response),
|
|
finish_reason="stop",
|
|
)
|
|
)
|
|
return ChatCompletionResponse(model="chatqna", choices=choices, usage=usage)
|
|
|
|
def start(self):
|
|
|
|
self.service = MicroService(
|
|
self.__class__.__name__,
|
|
service_role=ServiceRoleType.MEGASERVICE,
|
|
host=self.host,
|
|
port=self.port,
|
|
endpoint=self.endpoint,
|
|
input_datatype=ChatCompletionRequest,
|
|
output_datatype=ChatCompletionResponse,
|
|
)
|
|
|
|
self.service.add_route(self.endpoint, self.handle_request, methods=["POST"])
|
|
|
|
self.service.start()
|
|
|
|
|
|
if __name__ == "__main__":
|
|
parser = argparse.ArgumentParser()
|
|
parser.add_argument("--without-rerank", action="store_true")
|
|
parser.add_argument("--with-guardrails", action="store_true")
|
|
|
|
args = parser.parse_args()
|
|
|
|
chatqna = ChatQnAService(port=MEGA_SERVICE_PORT)
|
|
if args.without_rerank:
|
|
chatqna.add_remote_service_without_rerank()
|
|
elif args.with_guardrails:
|
|
chatqna.add_remote_service_with_guardrails()
|
|
else:
|
|
chatqna.add_remote_service()
|
|
|
|
chatqna.start()
|