Files
GenAIExamples/deploy_and_benchmark.py
bjzhjing ed163087ba Provide unified scalable deployment and benchmarking support for exam… (#1315)
Signed-off-by: Cathy Zhang <cathy.zhang@intel.com>
Signed-off-by: letonghan <letong.han@intel.com>
Co-authored-by: letonghan <letong.han@intel.com>
Co-authored-by: pre-commit-ci[bot] <66853113+pre-commit-ci[bot]@users.noreply.github.com>
2025-01-24 22:27:49 +08:00

293 lines
12 KiB
Python

# Copyright (C) 2025 Intel Corporation
# SPDX-License-Identifier: Apache-2.0
import argparse
import copy
import os
import re
import shutil
import subprocess
import sys
import yaml
from benchmark import run_benchmark
def read_yaml(file_path):
try:
with open(file_path, "r") as file:
return yaml.safe_load(file)
except Exception as e:
print(f"Error reading YAML file: {e}")
return None
def construct_deploy_config(deploy_config, target_node, max_batch_size=None):
"""Construct a new deploy config based on the target node number and optional max_batch_size.
Args:
deploy_config: Original deploy config dictionary
target_node: Target node number to match in the node array
max_batch_size: Optional specific max_batch_size value to use
Returns:
A new deploy config with single values for node and instance_num
"""
# Deep copy the original config to avoid modifying it
new_config = copy.deepcopy(deploy_config)
# Get the node array and validate
nodes = deploy_config.get("node")
if not isinstance(nodes, list):
raise ValueError("deploy_config['node'] must be an array")
# Find the index of the target node
try:
node_index = nodes.index(target_node)
except ValueError:
raise ValueError(f"Target node {target_node} not found in node array {nodes}")
# Set the single node value
new_config["node"] = target_node
# Update instance_num for each service based on the same index
for service_name, service_config in new_config.get("services", {}).items():
if "replicaCount" in service_config:
instance_nums = service_config["replicaCount"]
if isinstance(instance_nums, list):
if len(instance_nums) != len(nodes):
raise ValueError(
f"instance_num array length ({len(instance_nums)}) for service {service_name} "
f"doesn't match node array length ({len(nodes)})"
)
service_config["replicaCount"] = instance_nums[node_index]
# Update max_batch_size if specified
if max_batch_size is not None and "llm" in new_config["services"]:
new_config["services"]["llm"]["max_batch_size"] = max_batch_size
return new_config
def pull_helm_chart(chart_pull_url, version, chart_name):
# Pull and untar the chart
subprocess.run(["helm", "pull", chart_pull_url, "--version", version, "--untar"], check=True)
current_dir = os.getcwd()
untar_dir = os.path.join(current_dir, chart_name)
if not os.path.isdir(untar_dir):
print(f"Error: Could not find untarred directory for {chart_name}")
return None
return untar_dir
def main(yaml_file, target_node=None):
"""Main function to process deployment configuration.
Args:
yaml_file: Path to the YAML configuration file
target_node: Optional target number of nodes to deploy. If not specified, will process all nodes.
"""
config = read_yaml(yaml_file)
if config is None:
print("Failed to read YAML file.")
return None
deploy_config = config["deploy"]
benchmark_config = config["benchmark"]
# Extract chart name from the YAML file name
chart_name = os.path.splitext(os.path.basename(yaml_file))[0].split("_")[-1]
print(f"chart_name: {chart_name}")
python_cmd = sys.executable
# Process nodes
nodes = deploy_config.get("node", [])
if not isinstance(nodes, list):
print("Error: deploy_config['node'] must be an array")
return None
nodes_to_process = [target_node] if target_node is not None else nodes
node_names = deploy_config.get("node_name", [])
namespace = deploy_config.get("namespace", "default")
# Pull the Helm chart
chart_pull_url = f"oci://ghcr.io/opea-project/charts/{chart_name}"
version = deploy_config.get("version", "1.1.0")
chart_dir = pull_helm_chart(chart_pull_url, version, chart_name)
if not chart_dir:
return
for node in nodes_to_process:
try:
print(f"\nProcessing configuration for {node} nodes...")
# Get corresponding node names for this node count
current_node_names = node_names[:node] if node_names else []
# Add labels for current node configuration
print(f"Adding labels for {node} nodes...")
cmd = [python_cmd, "deploy.py", "--chart-name", chart_name, "--num-nodes", str(node), "--add-label"]
if current_node_names:
cmd.extend(["--node-names"] + current_node_names)
result = subprocess.run(cmd, check=True)
if result.returncode != 0:
print(f"Failed to add labels for {node} nodes")
continue
try:
# Process max_batch_sizes
max_batch_sizes = deploy_config.get("services", {}).get("llm", {}).get("max_batch_size", [])
if not isinstance(max_batch_sizes, list):
max_batch_sizes = [max_batch_sizes]
values_file_path = None
for i, max_batch_size in enumerate(max_batch_sizes):
print(f"\nProcessing max_batch_size: {max_batch_size}")
# Construct new deploy config
new_deploy_config = construct_deploy_config(deploy_config, node, max_batch_size)
# Write the new deploy config to a temporary file
temp_config_file = f"temp_deploy_config_{node}_{max_batch_size}.yaml"
try:
with open(temp_config_file, "w") as f:
yaml.dump(new_deploy_config, f)
if i == 0:
# First iteration: full deployment
cmd = [
python_cmd,
"deploy.py",
"--deploy-config",
temp_config_file,
"--chart-name",
chart_name,
"--namespace",
namespace,
"--chart-dir",
chart_dir,
]
result = subprocess.run(cmd, check=True, capture_output=True, text=True)
match = re.search(r"values_file_path: (\S+)", result.stdout)
if match:
values_file_path = match.group(1)
print(f"Captured values_file_path: {values_file_path}")
else:
print("values_file_path not found in the output")
else:
# Subsequent iterations: update services with config change
cmd = [
python_cmd,
"deploy.py",
"--deploy-config",
temp_config_file,
"--chart-name",
chart_name,
"--namespace",
namespace,
"--chart-dir",
chart_dir,
"--user-values",
values_file_path,
"--update-service",
]
result = subprocess.run(cmd, check=True)
if result.returncode != 0:
print(
f"Update failed for {node} nodes configuration with max_batch_size {max_batch_size}"
)
break # Skip remaining max_batch_sizes for this node
# Wait for deployment to be ready
print("\nWaiting for deployment to be ready...")
cmd = [
python_cmd,
"deploy.py",
"--chart-name",
chart_name,
"--namespace",
namespace,
"--check-ready",
]
try:
result = subprocess.run(cmd, check=True)
print("Deployments are ready!")
except subprocess.CalledProcessError as e:
print(f"Deployments status failed with returncode: {e.returncode}")
# Run benchmark
run_benchmark(
benchmark_config=benchmark_config,
chart_name=chart_name,
namespace=namespace,
llm_model=deploy_config.get("services", {}).get("llm", {}).get("model_id", ""),
)
except Exception as e:
print(
f"Error during {'deployment' if i == 0 else 'update'} for {node} nodes with max_batch_size {max_batch_size}: {str(e)}"
)
break # Skip remaining max_batch_sizes for this node
finally:
# Clean up the temporary file
if os.path.exists(temp_config_file):
os.remove(temp_config_file)
finally:
# Uninstall the deployment
print(f"\nUninstalling deployment for {node} nodes...")
cmd = [
python_cmd,
"deploy.py",
"--chart-name",
chart_name,
"--namespace",
namespace,
"--uninstall",
]
try:
result = subprocess.run(cmd, check=True)
if result.returncode != 0:
print(f"Failed to uninstall deployment for {node} nodes")
except Exception as e:
print(f"Error while uninstalling deployment for {node} nodes: {str(e)}")
# Delete labels for current node configuration
print(f"Deleting labels for {node} nodes...")
cmd = [python_cmd, "deploy.py", "--chart-name", chart_name, "--num-nodes", str(node), "--delete-label"]
if current_node_names:
cmd.extend(["--node-names"] + current_node_names)
try:
result = subprocess.run(cmd, check=True)
if result.returncode != 0:
print(f"Failed to delete labels for {node} nodes")
except Exception as e:
print(f"Error while deleting labels for {node} nodes: {str(e)}")
except Exception as e:
print(f"Error processing configuration for {node} nodes: {str(e)}")
continue
# Cleanup: Remove the untarred directory
if chart_dir and os.path.isdir(chart_dir):
print(f"Removing temporary directory: {chart_dir}")
shutil.rmtree(chart_dir)
print("Temporary directory removed successfully.")
if __name__ == "__main__":
parser = argparse.ArgumentParser(description="Deploy and benchmark with specific node configuration.")
parser.add_argument("yaml_file", help="Path to the YAML configuration file")
parser.add_argument("--target-node", type=int, help="Optional: Target number of nodes to deploy.", default=None)
args = parser.parse_args()
main(args.yaml_file, args.target_node)