#!/bin/bash # Copyright (C) 2024 Intel Corporation # SPDX-License-Identifier: Apache-2.0 set -xe IMAGE_REPO=${IMAGE_REPO:-"opea"} IMAGE_TAG=${IMAGE_TAG:-"latest"} echo "REGISTRY=IMAGE_REPO=${IMAGE_REPO}" echo "TAG=IMAGE_TAG=${IMAGE_TAG}" export REGISTRY=${IMAGE_REPO} export TAG=${IMAGE_TAG} export MODEL_CACHE=${model_cache:-"/data/cache"} WORKPATH=$(dirname "$PWD") LOG_PATH="$WORKPATH/tests" ip_address=$(hostname -I | awk '{print $1}') function build_docker_images() { opea_branch=${opea_branch:-"main"} cd $WORKPATH/docker_image_build git clone --depth 1 --branch ${opea_branch} https://github.com/opea-project/GenAIComps.git pushd GenAIComps echo "GenAIComps test commit is $(git rev-parse HEAD)" docker build --no-cache -t ${REGISTRY}/comps-base:${TAG} --build-arg https_proxy=$https_proxy --build-arg http_proxy=$http_proxy -f Dockerfile . popd && sleep 1s echo "Build all the images with --no-cache, check docker_image_build.log for details..." service_list="chatqna chatqna-ui dataprep retriever llm-faqgen nginx" docker compose -f build.yaml build ${service_list} --no-cache > ${LOG_PATH}/docker_image_build.log docker images && sleep 1s } function start_services() { cd $WORKPATH/docker_compose/intel/hpu/gaudi export FAQGen_COMPONENT_NAME="OpeaFaqGenTgi" source set_env_faqgen.sh # Start Docker Containers docker compose -f compose_faqgen_tgi.yaml up -d > ${LOG_PATH}/start_services_with_compose.log sleep 30s } function validate_service() { local URL="$1" local EXPECTED_RESULT="$2" local SERVICE_NAME="$3" local DOCKER_NAME="$4" local INPUT_DATA="$5" if [[ $SERVICE_NAME == *"dataprep_upload_file"* ]]; then cd $LOG_PATH HTTP_RESPONSE=$(curl --silent --write-out "HTTPSTATUS:%{http_code}" -X POST -F 'files=@./dataprep_file.txt' -H 'Content-Type: multipart/form-data' "$URL") elif [[ $SERVICE_NAME == *"dataprep_upload_link"* ]]; then HTTP_RESPONSE=$(curl --silent --write-out "HTTPSTATUS:%{http_code}" -X POST -F 'link_list=["https://www.ces.tech/"]' "$URL") elif [[ $SERVICE_NAME == *"dataprep_get"* ]]; then HTTP_RESPONSE=$(curl --silent --write-out "HTTPSTATUS:%{http_code}" -X POST -H 'Content-Type: application/json' "$URL") elif [[ $SERVICE_NAME == *"dataprep_del"* ]]; then HTTP_RESPONSE=$(curl --silent --write-out "HTTPSTATUS:%{http_code}" -X POST -d '{"file_path": "all"}' -H 'Content-Type: application/json' "$URL") else HTTP_RESPONSE=$(curl --silent --write-out "HTTPSTATUS:%{http_code}" -X POST -d "$INPUT_DATA" -H 'Content-Type: application/json' "$URL") fi HTTP_STATUS=$(echo $HTTP_RESPONSE | tr -d '\n' | sed -e 's/.*HTTPSTATUS://') RESPONSE_BODY=$(echo $HTTP_RESPONSE | sed -e 's/HTTPSTATUS\:.*//g') docker logs ${DOCKER_NAME} >> ${LOG_PATH}/${SERVICE_NAME}.log # check response status if [ "$HTTP_STATUS" -ne "200" ]; then echo "[ $SERVICE_NAME ] HTTP status is not 200. Received status was $HTTP_STATUS" exit 1 else echo "[ $SERVICE_NAME ] HTTP status is 200. Checking content..." fi echo "Response" echo $RESPONSE_BODY echo "Expected Result" echo $EXPECTED_RESULT # check response body if [[ "$RESPONSE_BODY" != *"$EXPECTED_RESULT"* ]]; then echo "[ $SERVICE_NAME ] Content does not match the expected result: $RESPONSE_BODY" exit 1 else echo "[ $SERVICE_NAME ] Content is as expected." fi sleep 1s } function validate_microservices() { # Check if the microservices are running correctly. # tei for embedding service validate_service \ "${ip_address}:8090/embed" \ "[[" \ "tei-embedding" \ "tei-embedding-gaudi-server" \ '{"inputs":"What is Deep Learning?"}' sleep 1m # retrieval can't curl as expected, try to wait for more time # test /v1/dataprep upload file echo "Deep learning is a subset of machine learning that utilizes neural networks with multiple layers to analyze various levels of abstract data representations. It enables computers to identify patterns and make decisions with minimal human intervention by learning from large amounts of data." > $LOG_PATH/dataprep_file.txt validate_service \ "http://${ip_address}:6007/v1/dataprep/ingest" \ "Data preparation succeeded" \ "dataprep_upload_file" \ "dataprep-redis-server" # test /v1/dataprep upload link validate_service \ "http://${ip_address}:6007/v1/dataprep/ingest" \ "Data preparation succeeded" \ "dataprep_upload_link" \ "dataprep-redis-server" # test /v1/dataprep/get_file validate_service \ "http://${ip_address}:6007/v1/dataprep/get" \ '{"name":' \ "dataprep_get" \ "dataprep-redis-server" # test /v1/dataprep/delete_file validate_service \ "http://${ip_address}:6007/v1/dataprep/delete" \ '{"status":true}' \ "dataprep_del" \ "dataprep-redis-server" # retrieval microservice test_embedding=$(python3 -c "import random; embedding = [random.uniform(-1, 1) for _ in range(768)]; print(embedding)") validate_service \ "${ip_address}:7000/v1/retrieval" \ " " \ "retrieval" \ "retriever-redis-server" \ "{\"text\":\"What is the revenue of Nike in 2023?\",\"embedding\":${test_embedding}}" # tei for rerank microservice echo "validate tei..." validate_service \ "${ip_address}:8808/rerank" \ '{"index":1,"score":' \ "tei-rerank" \ "tei-reranking-gaudi-server" \ '{"query":"What is Deep Learning?", "texts": ["Deep Learning is not...", "Deep learning is..."]}' # tgi for llm service echo "validate tgi..." validate_service \ "${ip_address}:${LLM_ENDPOINT_PORT}/v1/chat/completions" \ "content" \ "tgi-llm" \ "tgi-gaudi-server" \ '{"model": "meta-llama/Meta-Llama-3-8B-Instruct", "messages": [{"role": "user", "content": "What is Deep Learning?"}], "max_tokens":17}' # faqgen llm microservice echo "validate llm-faqgen..." validate_service \ "${ip_address}:${LLM_SERVER_PORT}/v1/faqgen" \ "text" \ "llm" \ "llm-faqgen-server" \ '{"messages":"Text Embeddings Inference (TEI) is a toolkit for deploying and serving open source text embeddings and sequence classification models. TEI enables high-performance extraction for the most popular models, including FlagEmbedding, Ember, GTE and E5."}' } function validate_megaservice() { # Curl the Mega Service validate_service \ "${ip_address}:${CHATQNA_BACKEND_PORT}/v1/chatqna" \ "Embed" \ "chatqna-megaservice" \ "chatqna-gaudi-backend-server" \ '{"messages": "Text Embeddings Inference (TEI) is a toolkit for deploying and serving open source text embeddings and sequence classification models. TEI enables high-performance extraction for the most popular models, including FlagEmbedding, Ember, GTE and E5.","max_tokens":32}' validate_service \ "${ip_address}:${CHATQNA_BACKEND_PORT}/v1/chatqna" \ "Embed" \ "chatqna-megaservice" \ "chatqna-gaudi-backend-server" \ '{"messages": "Text Embeddings Inference (TEI) is a toolkit for deploying and serving open source text embeddings and sequence classification models. TEI enables high-performance extraction for the most popular models, including FlagEmbedding, Ember, GTE and E5.","max_tokens":32,"stream":false}' } function validate_frontend() { cd $WORKPATH/ui/svelte local conda_env_name="OPEA_e2e" export PATH=${HOME}/miniforge3/bin/:$PATH if conda info --envs | grep -q "$conda_env_name"; then echo "$conda_env_name exist!" else conda create -n ${conda_env_name} python=3.12 -y fi source activate ${conda_env_name} sed -i "s/localhost/$ip_address/g" playwright.config.ts conda install -c conda-forge nodejs=22.6.0 -y npm install && npm ci && npx playwright install --with-deps node -v && npm -v && pip list exit_status=0 npx playwright test || exit_status=$? if [ $exit_status -ne 0 ]; then echo "[TEST INFO]: ---------frontend test failed---------" exit $exit_status else echo "[TEST INFO]: ---------frontend test passed---------" fi } function stop_docker() { cd $WORKPATH/docker_compose/intel/hpu/gaudi docker compose -f compose_faqgen_tgi.yaml down } function main() { echo "::group::stop_docker" stop_docker echo "::endgroup::" echo "::group::build_docker_images" if [[ "$IMAGE_REPO" == "opea" ]]; then build_docker_images; fi echo "::endgroup::" echo "::group::start_services" start_services echo "::endgroup::" echo "::group::validate_microservices" validate_microservices echo "::endgroup::" echo "::group::validate_megaservice" validate_megaservice echo "::endgroup::" echo "::group::validate_frontend" validate_frontend echo "::endgroup::" echo "::group::stop_docker" stop_docker echo "::endgroup::" docker system prune -f } main