# Copyright (C) 2024 Intel Corporation # SPDX-License-Identifier: Apache-2.0 import base64 import os from comps import MegaServiceEndpoint, MicroService, ServiceOrchestrator, ServiceRoleType, ServiceType from comps.cores.proto.api_protocol import AudioChatCompletionRequest, ChatCompletionResponse from comps.cores.proto.docarray import LLMParams from fastapi import Request MEGA_SERVICE_PORT = int(os.getenv("MEGA_SERVICE_PORT", 8888)) WHISPER_SERVER_HOST_IP = os.getenv("WHISPER_SERVER_HOST_IP", "0.0.0.0") WHISPER_SERVER_PORT = int(os.getenv("WHISPER_SERVER_PORT", 7066)) GPT_SOVITS_SERVER_HOST_IP = os.getenv("GPT_SOVITS_SERVER_HOST_IP", "0.0.0.0") GPT_SOVITS_SERVER_PORT = int(os.getenv("GPT_SOVITS_SERVER_PORT", 9088)) LLM_SERVER_HOST_IP = os.getenv("LLM_SERVER_HOST_IP", "0.0.0.0") LLM_SERVER_PORT = int(os.getenv("LLM_SERVER_PORT", 8888)) LLM_MODEL_ID = os.getenv("LLM_MODEL_ID", "meta-llama/Meta-Llama-3-8B-Instruct") def align_inputs(self, inputs, cur_node, runtime_graph, llm_parameters_dict, **kwargs): if self.services[cur_node].service_type == ServiceType.LLM: # convert TGI/vLLM to unified OpenAI /v1/chat/completions format next_inputs = {} next_inputs["model"] = LLM_MODEL_ID next_inputs["messages"] = [{"role": "user", "content": inputs["asr_result"]}] next_inputs["max_tokens"] = llm_parameters_dict["max_tokens"] next_inputs["top_p"] = llm_parameters_dict["top_p"] next_inputs["stream"] = inputs["stream"] # False as default next_inputs["frequency_penalty"] = inputs["frequency_penalty"] # next_inputs["presence_penalty"] = inputs["presence_penalty"] # next_inputs["repetition_penalty"] = inputs["repetition_penalty"] next_inputs["temperature"] = inputs["temperature"] inputs = next_inputs elif self.services[cur_node].service_type == ServiceType.TTS: next_inputs = {} next_inputs["text"] = inputs["choices"][0]["message"]["content"] next_inputs["text_language"] = kwargs["tts_text_language"] if "tts_text_language" in kwargs else "zh" inputs = next_inputs return inputs def align_outputs(self, data, cur_node, inputs, runtime_graph, llm_parameters_dict, **kwargs): if self.services[cur_node].service_type == ServiceType.TTS: audio_base64 = base64.b64encode(data).decode("utf-8") return {"byte_str": audio_base64} return data class AudioQnAService: def __init__(self, host="0.0.0.0", port=8000): self.host = host self.port = port ServiceOrchestrator.align_inputs = align_inputs ServiceOrchestrator.align_outputs = align_outputs self.megaservice = ServiceOrchestrator() self.endpoint = str(MegaServiceEndpoint.AUDIO_QNA) def add_remote_service(self): asr = MicroService( name="asr", host=WHISPER_SERVER_HOST_IP, port=WHISPER_SERVER_PORT, # endpoint="/v1/audio/transcriptions", endpoint="/v1/asr", use_remote_service=True, service_type=ServiceType.ASR, ) llm = MicroService( name="llm", host=LLM_SERVER_HOST_IP, port=LLM_SERVER_PORT, endpoint="/v1/chat/completions", use_remote_service=True, service_type=ServiceType.LLM, ) tts = MicroService( name="tts", host=GPT_SOVITS_SERVER_HOST_IP, port=GPT_SOVITS_SERVER_PORT, # endpoint="/v1/audio/speech", endpoint="/", use_remote_service=True, service_type=ServiceType.TTS, ) self.megaservice.add(asr).add(llm).add(tts) self.megaservice.flow_to(asr, llm) self.megaservice.flow_to(llm, tts) async def handle_request(self, request: Request): data = await request.json() chat_request = AudioChatCompletionRequest.parse_obj(data) parameters = LLMParams( # relatively lower max_tokens for audio conversation max_tokens=chat_request.max_tokens if chat_request.max_tokens else 128, top_k=chat_request.top_k if chat_request.top_k else 10, top_p=chat_request.top_p if chat_request.top_p else 0.95, temperature=chat_request.temperature if chat_request.temperature else 0.01, frequency_penalty=chat_request.frequency_penalty if chat_request.frequency_penalty else 0.0, presence_penalty=chat_request.presence_penalty if chat_request.presence_penalty else 0.0, repetition_penalty=chat_request.repetition_penalty if chat_request.repetition_penalty else 1.03, stream=False, # TODO add stream LLM output as input to TTS ) result_dict, runtime_graph = await self.megaservice.schedule( initial_inputs={"audio": chat_request.audio}, llm_parameters=parameters ) last_node = runtime_graph.all_leaves()[-1] response = result_dict[last_node]["byte_str"] return response def start(self): self.service = MicroService( self.__class__.__name__, service_role=ServiceRoleType.MEGASERVICE, host=self.host, port=self.port, endpoint=self.endpoint, input_datatype=AudioChatCompletionRequest, output_datatype=ChatCompletionResponse, ) self.service.add_route(self.endpoint, self.handle_request, methods=["POST"]) self.service.start() if __name__ == "__main__": audioqna = AudioQnAService(port=MEGA_SERVICE_PORT) audioqna.add_remote_service() audioqna.start()