# Copyright (C) 2024 Intel Corporation # SPDX-License-Identifier: Apache-2.0 import argparse import asyncio import os from typing import Union from comps import MegaServiceEndpoint, MicroService, ServiceOrchestrator, ServiceRoleType, ServiceType from comps.cores.proto.api_protocol import ChatCompletionRequest, EmbeddingRequest from comps.cores.proto.docarray import LLMParamsDoc, RerankedDoc, RerankerParms, RetrieverParms, TextDoc from fastapi import Request from fastapi.responses import StreamingResponse MEGA_SERVICE_PORT = os.getenv("MEGA_SERVICE_PORT", 8889) EMBEDDING_SERVICE_HOST_IP = os.getenv("EMBEDDING_SERVICE_HOST_IP", "0.0.0.0") EMBEDDING_SERVICE_PORT = os.getenv("EMBEDDING_SERVICE_PORT", 6000) RETRIEVER_SERVICE_HOST_IP = os.getenv("RETRIEVER_SERVICE_HOST_IP", "0.0.0.0") RETRIEVER_SERVICE_PORT = os.getenv("RETRIEVER_SERVICE_PORT", 7000) RERANK_SERVICE_HOST_IP = os.getenv("RERANK_SERVICE_HOST_IP", "0.0.0.0") RERANK_SERVICE_PORT = os.getenv("RERANK_SERVICE_PORT", 8000) class RetrievalToolService: def __init__(self, host="0.0.0.0", port=8000): self.host = host self.port = port self.megaservice = ServiceOrchestrator() self.endpoint = str(MegaServiceEndpoint.RETRIEVALTOOL) def add_remote_service(self): embedding = MicroService( name="embedding", host=EMBEDDING_SERVICE_HOST_IP, port=EMBEDDING_SERVICE_PORT, endpoint="/v1/embeddings", use_remote_service=True, service_type=ServiceType.EMBEDDING, ) retriever = MicroService( name="retriever", host=RETRIEVER_SERVICE_HOST_IP, port=RETRIEVER_SERVICE_PORT, endpoint="/v1/retrieval", use_remote_service=True, service_type=ServiceType.RETRIEVER, ) rerank = MicroService( name="rerank", host=RERANK_SERVICE_HOST_IP, port=RERANK_SERVICE_PORT, endpoint="/v1/reranking", use_remote_service=True, service_type=ServiceType.RERANK, ) self.megaservice.add(embedding).add(retriever).add(rerank) self.megaservice.flow_to(embedding, retriever) self.megaservice.flow_to(retriever, rerank) async def handle_request(self, request: Request): def parser_input(data, TypeClass, key): chat_request = None try: chat_request = TypeClass.parse_obj(data) query = getattr(chat_request, key) except: query = None return query, chat_request data = await request.json() query = None for key, TypeClass in zip(["text", "input", "messages"], [TextDoc, EmbeddingRequest, ChatCompletionRequest]): query, chat_request = parser_input(data, TypeClass, key) if query is not None: break if query is None: raise ValueError(f"Unknown request type: {data}") if chat_request is None: raise ValueError(f"Unknown request type: {data}") if isinstance(chat_request, ChatCompletionRequest): retriever_parameters = RetrieverParms( search_type=chat_request.search_type if chat_request.search_type else "similarity", k=chat_request.k if chat_request.k else 4, distance_threshold=chat_request.distance_threshold if chat_request.distance_threshold else None, fetch_k=chat_request.fetch_k if chat_request.fetch_k else 20, lambda_mult=chat_request.lambda_mult if chat_request.lambda_mult else 0.5, score_threshold=chat_request.score_threshold if chat_request.score_threshold else 0.2, ) reranker_parameters = RerankerParms( top_n=chat_request.top_n if chat_request.top_n else 1, ) initial_inputs = { "messages": query, "input": query, # has to be input due to embedding expects either input or text "search_type": chat_request.search_type if chat_request.search_type else "similarity", "k": chat_request.k if chat_request.k else 4, "distance_threshold": chat_request.distance_threshold if chat_request.distance_threshold else None, "fetch_k": chat_request.fetch_k if chat_request.fetch_k else 20, "lambda_mult": chat_request.lambda_mult if chat_request.lambda_mult else 0.5, "score_threshold": chat_request.score_threshold if chat_request.score_threshold else 0.2, "top_n": chat_request.top_n if chat_request.top_n else 1, } result_dict, runtime_graph = await self.megaservice.schedule( initial_inputs=initial_inputs, retriever_parameters=retriever_parameters, reranker_parameters=reranker_parameters, ) else: result_dict, runtime_graph = await self.megaservice.schedule(initial_inputs={"text": query}) last_node = runtime_graph.all_leaves()[-1] response = result_dict[last_node] return response def start(self): self.service = MicroService( self.__class__.__name__, service_role=ServiceRoleType.MEGASERVICE, host=self.host, port=self.port, endpoint=self.endpoint, input_datatype=Union[TextDoc, EmbeddingRequest, ChatCompletionRequest], output_datatype=Union[RerankedDoc, LLMParamsDoc], ) self.service.add_route(self.endpoint, self.handle_request, methods=["POST"]) self.service.start() def add_remote_service_without_rerank(self): embedding = MicroService( name="embedding", host=EMBEDDING_SERVICE_HOST_IP, port=EMBEDDING_SERVICE_PORT, endpoint="/v1/embeddings", use_remote_service=True, service_type=ServiceType.EMBEDDING, ) retriever = MicroService( name="retriever", host=RETRIEVER_SERVICE_HOST_IP, port=RETRIEVER_SERVICE_PORT, endpoint="/v1/retrieval", use_remote_service=True, service_type=ServiceType.RETRIEVER, ) self.megaservice.add(embedding).add(retriever) self.megaservice.flow_to(embedding, retriever) if __name__ == "__main__": parser = argparse.ArgumentParser() parser.add_argument("--without-rerank", action="store_true") args = parser.parse_args() chatqna = RetrievalToolService(port=MEGA_SERVICE_PORT) if args.without_rerank: chatqna.add_remote_service_without_rerank() else: chatqna.add_remote_service() chatqna.start()