#!/bin/bash # Copyright (C) 2024 Intel Corporation # SPDX-License-Identifier: Apache-2.0 set -e IMAGE_REPO=${IMAGE_REPO:-"opea"} IMAGE_TAG=${IMAGE_TAG:-"latest"} echo "REGISTRY=IMAGE_REPO=${IMAGE_REPO}" echo "TAG=IMAGE_TAG=${IMAGE_TAG}" export REGISTRY=${IMAGE_REPO} export TAG=${IMAGE_TAG} WORKPATH=$(dirname "$PWD") LOG_PATH="$WORKPATH/tests" ip_address=$(hostname -I | awk '{print $1}') function build_docker_images() { opea_branch=${opea_branch:-"main"} # If the opea_branch isn't main, replace the git clone branch in Dockerfile. if [[ "${opea_branch}" != "main" ]]; then cd $WORKPATH OLD_STRING="RUN git clone --depth 1 https://github.com/opea-project/GenAIComps.git" NEW_STRING="RUN git clone --depth 1 --branch ${opea_branch} https://github.com/opea-project/GenAIComps.git" find . -type f -name "Dockerfile*" | while read -r file; do echo "Processing file: $file" sed -i "s|$OLD_STRING|$NEW_STRING|g" "$file" done fi cd $WORKPATH/docker_image_build git clone --depth 1 --branch ${opea_branch} https://github.com/opea-project/GenAIComps.git git clone --depth 1 --branch v0.6.4.post2+Gaudi-1.19.0 https://github.com/HabanaAI/vllm-fork.git sed -i 's/triton/triton==3.1.0/g' vllm-fork/requirements-hpu.txt echo "Build all the images with --no-cache, check docker_image_build.log for details..." service_list="chatqna-without-rerank chatqna-ui dataprep retriever vllm-gaudi nginx" docker compose -f build.yaml build ${service_list} --no-cache > ${LOG_PATH}/docker_image_build.log docker pull ghcr.io/huggingface/text-embeddings-inference:cpu-1.5 docker pull ghcr.io/huggingface/tei-gaudi:1.5.0 docker images && sleep 1s } function start_services() { cd $WORKPATH/docker_compose/intel/hpu/gaudi export EMBEDDING_MODEL_ID="BAAI/bge-base-en-v1.5" export LLM_MODEL_ID="meta-llama/Meta-Llama-3-8B-Instruct" export NUM_CARDS=1 export INDEX_NAME="rag-redis" export HUGGINGFACEHUB_API_TOKEN=${HUGGINGFACEHUB_API_TOKEN} # Start Docker Containers docker compose -f compose_without_rerank.yaml up -d > ${LOG_PATH}/start_services_with_compose.log n=0 until [[ "$n" -ge 160 ]]; do docker logs vllm-gaudi-server > vllm_service_start.log if grep -q "Warmup finished" vllm_service_start.log; then break fi sleep 5s n=$((n+1)) done } function validate_service() { local URL="$1" local EXPECTED_RESULT="$2" local SERVICE_NAME="$3" local DOCKER_NAME="$4" local INPUT_DATA="$5" if [[ $SERVICE_NAME == *"dataprep_upload_file"* ]]; then cd $LOG_PATH HTTP_RESPONSE=$(curl --silent --write-out "HTTPSTATUS:%{http_code}" -X POST -F 'files=@./dataprep_file.txt' -H 'Content-Type: multipart/form-data' "$URL") elif [[ $SERVICE_NAME == *"dataprep_upload_link"* ]]; then HTTP_RESPONSE=$(curl --silent --write-out "HTTPSTATUS:%{http_code}" -X POST -F 'link_list=["https://www.ces.tech/"]' "$URL") elif [[ $SERVICE_NAME == *"dataprep_get"* ]]; then HTTP_RESPONSE=$(curl --silent --write-out "HTTPSTATUS:%{http_code}" -X POST -H 'Content-Type: application/json' "$URL") elif [[ $SERVICE_NAME == *"dataprep_del"* ]]; then HTTP_RESPONSE=$(curl --silent --write-out "HTTPSTATUS:%{http_code}" -X POST -d '{"file_path": "all"}' -H 'Content-Type: application/json' "$URL") else HTTP_RESPONSE=$(curl --silent --write-out "HTTPSTATUS:%{http_code}" -X POST -d "$INPUT_DATA" -H 'Content-Type: application/json' "$URL") fi HTTP_STATUS=$(echo $HTTP_RESPONSE | tr -d '\n' | sed -e 's/.*HTTPSTATUS://') RESPONSE_BODY=$(echo $HTTP_RESPONSE | sed -e 's/HTTPSTATUS\:.*//g') docker logs ${DOCKER_NAME} >> ${LOG_PATH}/${SERVICE_NAME}.log # check response status if [ "$HTTP_STATUS" -ne "200" ]; then echo "[ $SERVICE_NAME ] HTTP status is not 200. Received status was $HTTP_STATUS" exit 1 else echo "[ $SERVICE_NAME ] HTTP status is 200. Checking content..." fi # check response body if [[ "$RESPONSE_BODY" != *"$EXPECTED_RESULT"* ]]; then echo "[ $SERVICE_NAME ] Content does not match the expected result: $RESPONSE_BODY" exit 1 else echo "[ $SERVICE_NAME ] Content is as expected." fi sleep 1s } function validate_microservices() { # Check if the microservices are running correctly. # tei for embedding service validate_service \ "${ip_address}:8090/embed" \ "[[" \ "tei-embedding" \ "tei-embedding-gaudi-server" \ '{"inputs":"What is Deep Learning?"}' sleep 1m # retrieval can't curl as expected, try to wait for more time # test /v1/dataprep/ingest upload file echo "Deep learning is a subset of machine learning that utilizes neural networks with multiple layers to analyze various levels of abstract data representations. It enables computers to identify patterns and make decisions with minimal human intervention by learning from large amounts of data." > $LOG_PATH/dataprep_file.txt validate_service \ "http://${ip_address}:6007/v1/dataprep/ingest" \ "Data preparation succeeded" \ "dataprep_upload_file" \ "dataprep-redis-server" # test /v1/dataprep/ingest upload link validate_service \ "http://${ip_address}:6007/v1/dataprep/ingest" \ "Data preparation succeeded" \ "dataprep_upload_link" \ "dataprep-redis-server" # test /v1/dataprep/get validate_service \ "http://${ip_address}:6007/v1/dataprep/get" \ '{"name":' \ "dataprep_get" \ "dataprep-redis-server" # test /v1/dataprep/delete validate_service \ "http://${ip_address}:6007/v1/dataprep/delete" \ '{"status":true}' \ "dataprep_del" \ "dataprep-redis-server" # retrieval microservice test_embedding=$(python3 -c "import random; embedding = [random.uniform(-1, 1) for _ in range(768)]; print(embedding)") validate_service \ "${ip_address}:7000/v1/retrieval" \ "retrieved_docs" \ "retrieval-microservice" \ "retriever-redis-server" \ "{\"text\":\"What is the revenue of Nike in 2023?\",\"embedding\":${test_embedding}}" # vllm for llm service validate_service \ "${ip_address}:8007/v1/chat/completions" \ "content" \ "vllm-llm" \ "vllm-gaudi-server" \ '{"model": "meta-llama/Meta-Llama-3-8B-Instruct", "messages": [{"role": "user", "content": "What is Deep Learning?"}], "max_tokens":17}' } function validate_megaservice() { # Curl the Mega Service validate_service \ "${ip_address}:8888/v1/chatqna" \ "data: " \ "chatqna-megaservice" \ "chatqna-gaudi-backend-server" \ '{"messages": "What is the revenue of Nike in 2023?"}' } function validate_frontend() { cd $WORKPATH/ui/svelte local conda_env_name="OPEA_e2e" export PATH=${HOME}/miniforge3/bin/:$PATH if conda info --envs | grep -q "$conda_env_name"; then echo "$conda_env_name exist!" else conda create -n ${conda_env_name} python=3.12 -y fi source activate ${conda_env_name} sed -i "s/localhost/$ip_address/g" playwright.config.ts conda install -c conda-forge nodejs=22.6.0 -y npm install && npm ci && npx playwright install --with-deps node -v && npm -v && pip list exit_status=0 npx playwright test || exit_status=$? if [ $exit_status -ne 0 ]; then echo "[TEST INFO]: ---------frontend test failed---------" exit $exit_status else echo "[TEST INFO]: ---------frontend test passed---------" fi } function stop_docker() { cd $WORKPATH/docker_compose/intel/hpu/gaudi docker compose -f compose_without_rerank.yaml down } function main() { stop_docker if [[ "$IMAGE_REPO" == "opea" ]]; then build_docker_images; fi start_time=$(date +%s) start_services end_time=$(date +%s) duration=$((end_time-start_time)) echo "Mega service start duration is $duration s" if [ "${mode}" == "perf" ]; then python3 $WORKPATH/tests/chatqna_benchmark.py elif [ "${mode}" == "" ]; then validate_microservices validate_megaservice validate_frontend fi stop_docker echo y | docker system prune } main