#!/bin/bash # Copyright (C) 2024 Intel Corporation # SPDX-License-Identifier: Apache-2.0 set -xe IMAGE_REPO=${IMAGE_REPO:-"opea"} IMAGE_TAG=${IMAGE_TAG:-"latest"} echo "REGISTRY=IMAGE_REPO=${IMAGE_REPO}" echo "TAG=IMAGE_TAG=${IMAGE_TAG}" export REGISTRY=${IMAGE_REPO} export TAG=${IMAGE_TAG} export MODEL_CACHE=${model_cache:-"./data"} WORKPATH=$(dirname "$PWD") LOG_PATH="$WORKPATH/tests" ip_address=$(hostname -I | awk '{print $1}') source $WORKPATH/docker_compose/intel/set_env.sh function build_docker_images() { opea_branch=${opea_branch:-"main"} cd $WORKPATH/docker_image_build git clone --depth 1 --branch ${opea_branch} https://github.com/opea-project/GenAIComps.git pushd GenAIComps echo "GenAIComps test commit is $(git rev-parse HEAD)" docker build --no-cache -t ${REGISTRY}/comps-base:${TAG} --build-arg https_proxy=$https_proxy --build-arg http_proxy=$http_proxy -f Dockerfile . popd && sleep 1s git clone https://github.com/vllm-project/vllm.git && cd vllm VLLM_VER="v0.8.3" echo "Check out vLLM tag ${VLLM_VER}" git checkout ${VLLM_VER} &> /dev/null cd ../ echo "Build all the images with --no-cache, check docker_image_build.log for details..." service_list="codegen codegen-gradio-ui llm-textgen vllm dataprep retriever embedding" docker compose -f build.yaml build ${service_list} --no-cache > ${LOG_PATH}/docker_image_build.log docker pull ghcr.io/huggingface/text-generation-inference:2.4.0-intel-cpu docker images && sleep 1s } function start_services() { local compose_profile="$1" local llm_container_name="$2" cd $WORKPATH/docker_compose/intel/cpu/xeon/ # Start Docker Containers docker compose --profile ${compose_profile} up -d > ${LOG_PATH}/start_services_with_compose.log n=0 until [[ "$n" -ge 100 ]]; do docker logs ${llm_container_name} > ${LOG_PATH}/llm_service_start.log 2>&1 if grep -E "Connected|complete" ${LOG_PATH}/llm_service_start.log; then break fi sleep 5s n=$((n+1)) done } function validate_services() { local URL="$1" local EXPECTED_RESULT="$2" local SERVICE_NAME="$3" local DOCKER_NAME="$4" local INPUT_DATA="$5" if [[ "$SERVICE_NAME" == "ingest" ]]; then local HTTP_STATUS=$(curl -s -o /dev/null -w "%{http_code}" -X POST -F "$INPUT_DATA" -F index_name=test_redis -H 'Content-Type: multipart/form-data' "$URL") if [ "$HTTP_STATUS" -eq 200 ]; then echo "[ $SERVICE_NAME ] HTTP status is 200. Data preparation succeeded..." else echo "[ $SERVICE_NAME ] Data preparation failed..." fi else local HTTP_STATUS=$(curl -s -o /dev/null -w "%{http_code}" -X POST -d "$INPUT_DATA" -H 'Content-Type: application/json' "$URL") if [ "$HTTP_STATUS" -eq 200 ]; then echo "[ $SERVICE_NAME ] HTTP status is 200. Checking content..." local CONTENT=$(curl -s -X POST -d "$INPUT_DATA" -H 'Content-Type: application/json' "$URL" | tee ${LOG_PATH}/${SERVICE_NAME}.log) if echo "$CONTENT" | grep -q "$EXPECTED_RESULT"; then echo "[ $SERVICE_NAME ] Content is as expected." else echo "[ $SERVICE_NAME ] Content does not match the expected result: $CONTENT" docker logs ${DOCKER_NAME} >> ${LOG_PATH}/${SERVICE_NAME}.log exit 1 fi else echo "[ $SERVICE_NAME ] HTTP status is not 200. Received status was $HTTP_STATUS" docker logs ${DOCKER_NAME} >> ${LOG_PATH}/${SERVICE_NAME}.log exit 1 fi fi sleep 5s } function validate_microservices() { local llm_container_name="$1" # tgi for llm service validate_services \ "${ip_address}:8028/v1/chat/completions" \ "completion_tokens" \ "llm-service" \ "${llm_container_name}" \ '{"model": "Qwen/Qwen2.5-Coder-7B-Instruct", "messages": [{"role": "user", "content": "What is Deep Learning?"}], "max_tokens": 256}' # llm microservice validate_services \ "${ip_address}:9000/v1/chat/completions" \ "data: " \ "llm" \ "llm-textgen-server" \ '{"query":"def print_hello_world():", "max_tokens": 256}' # Data ingest microservice validate_services \ "${ip_address}:6007/v1/dataprep/ingest" \ "Data preparation succeeded" \ "ingest" \ "dataprep-redis-server" \ 'link_list=["https://modin.readthedocs.io/en/latest/index.html"]' } function validate_megaservice() { # Curl the Mega Service validate_services \ "${ip_address}:7778/v1/codegen" \ "print" \ "mega-codegen" \ "codegen-xeon-backend-server" \ '{"messages": "def print_hello_world():", "max_tokens": 256}' # Curl the Mega Service with index_name and agents_flag validate_services \ "${ip_address}:7778/v1/codegen" \ "" \ "mega-codegen" \ "codegen-xeon-backend-server" \ '{ "index_name": "test_redis", "agents_flag": "True", "messages": "def print_hello_world():", "max_tokens": 256}' } function validate_frontend() { cd $WORKPATH/ui/svelte local conda_env_name="OPEA_e2e" export PATH=${HOME}/miniforge3/bin/:$PATH if conda info --envs | grep -q "$conda_env_name"; then echo "$conda_env_name exist!" else conda create -n ${conda_env_name} python=3.12 -y fi source activate ${conda_env_name} sed -i "s/localhost/$ip_address/g" playwright.config.ts conda install -c conda-forge nodejs=22.6.0 -y npm install && npm ci && npx playwright install --with-deps node -v && npm -v && pip list exit_status=0 npx playwright test || exit_status=$? if [ $exit_status -ne 0 ]; then echo "[TEST INFO]: ---------frontend test failed---------" exit $exit_status else echo "[TEST INFO]: ---------frontend test passed---------" fi } function validate_gradio() { local URL="http://${ip_address}:5173/health" local HTTP_STATUS=$(curl "$URL") local SERVICE_NAME="Gradio" if [ "$HTTP_STATUS" = '{"status":"ok"}' ]; then echo "[ $SERVICE_NAME ] HTTP status is 200. UI server is running successfully..." else echo "[ $SERVICE_NAME ] UI server has failed..." fi } function stop_docker() { local docker_profile="$1" cd $WORKPATH/docker_compose/intel/cpu/xeon/ docker compose --profile ${docker_profile} down } function main() { # all docker docker compose profiles for Xeon Platform docker_compose_profiles=("codegen-xeon-tgi" "codegen-xeon-vllm") docker_llm_container_names=("tgi-server" "vllm-server") # get number of profiels and LLM docker container names len_profiles=${#docker_compose_profiles[@]} len_containers=${#docker_llm_container_names[@]} # number of profiels and docker container names must be matched if [ ${len_profiles} -ne ${len_containers} ]; then echo "Error: number of profiles ${len_profiles} and container names ${len_containers} mismatched" exit 1 fi # stop_docker, stop all profiles for ((i = 0; i < len_profiles; i++)); do stop_docker "${docker_compose_profiles[${i}]}" done # build docker images if [[ "$IMAGE_REPO" == "opea" ]]; then build_docker_images; fi # loop all profiles for ((i = 0; i < len_profiles; i++)); do echo "Process [${i}]: ${docker_compose_profiles[$i]}, ${docker_llm_container_names[${i}]}" docker ps -a echo "::group::start_services" start_services "${docker_compose_profiles[${i}]}" "${docker_llm_container_names[${i}]}" echo "::endgroup::" echo "::group::validate_microservices" validate_microservices "${docker_llm_container_names[${i}]}" echo "::endgroup::" echo "::group::validate_megaservice" validate_megaservice echo "::endgroup::" echo "::group::validate_gradio" validate_gradio echo "::endgroup::" stop_docker "${docker_compose_profiles[${i}]}" sleep 5s done docker system prune -f } main