# Copyright (C) 2024 Intel Corporation # SPDX-License-Identifier: Apache-2.0 import os from comps import MegaServiceEndpoint, MicroService, ServiceOrchestrator, ServiceRoleType, ServiceType from comps.cores.mega.utils import handle_message from comps.cores.proto.api_protocol import ( ChatCompletionRequest, ChatCompletionResponse, ChatCompletionResponseChoice, ChatMessage, UsageInfo, ) from comps.cores.proto.docarray import LLMParams, TextDoc from fastapi import Request from fastapi.responses import StreamingResponse MEGA_SERVICE_PORT = int(os.getenv("BACKEND_PORT", 8888)) EMBEDDING_SERVICE_HOST_IP = os.getenv("EMBEDDING_SERVICE_HOST_IP", "0.0.0.0") EMBEDDING_SERVICE_PORT = int(os.getenv("EMBEDDER_PORT", 6990)) RETRIEVER_SERVICE_HOST_IP = os.getenv("RETRIEVER_SERVICE_HOST_IP", "0.0.0.0") RETRIEVER_SERVICE_PORT = int(os.getenv("RETRIEVER_PORT", 7000)) RERANK_SERVICE_HOST_IP = os.getenv("RERANK_SERVICE_HOST_IP", "0.0.0.0") RERANK_SERVICE_PORT = int(os.getenv("RERANK_SERVICE_PORT", 8000)) LVM_SERVICE_HOST_IP = os.getenv("LVM_SERVICE_HOST_IP", "0.0.0.0") LVM_SERVICE_PORT = int(os.getenv("LVM_PORT", 9399)) def align_inputs(self, inputs, cur_node, runtime_graph, llm_parameters_dict, **kwargs): service_type = self.services[cur_node].service_type if service_type == ServiceType.EMBEDDING: if "input" in inputs: input_text = inputs["input"]["text"] if isinstance(inputs["input"], dict) else inputs["input"] inputs = TextDoc(text=input_text).model_dump() return inputs def align_outputs(self, data, cur_node, inputs, runtime_graph, llm_parameters_dict, **kwargs): if self.services[cur_node].service_type == ServiceType.EMBEDDING: return {"text": inputs["text"], "embedding": data["embedding"]} else: return data class VideoQnAService: def __init__(self, host="0.0.0.0", port=8888): self.host = host self.port = port ServiceOrchestrator.align_inputs = align_inputs ServiceOrchestrator.align_outputs = align_outputs self.megaservice = ServiceOrchestrator() self.endpoint = str(MegaServiceEndpoint.VIDEO_RAG_QNA) def add_remote_service(self): embedding = MicroService( name="embedding", host=EMBEDDING_SERVICE_HOST_IP, port=EMBEDDING_SERVICE_PORT, endpoint="/v1/embeddings", use_remote_service=True, service_type=ServiceType.EMBEDDING, ) retriever = MicroService( name="retriever", host=RETRIEVER_SERVICE_HOST_IP, port=RETRIEVER_SERVICE_PORT, endpoint="/v1/retrieval", use_remote_service=True, service_type=ServiceType.RETRIEVER, ) rerank = MicroService( name="rerank", host=RERANK_SERVICE_HOST_IP, port=RERANK_SERVICE_PORT, endpoint="/v1/reranking", use_remote_service=True, service_type=ServiceType.RERANK, ) lvm = MicroService( name="lvm", host=LVM_SERVICE_HOST_IP, port=LVM_SERVICE_PORT, endpoint="/v1/lvm", use_remote_service=True, service_type=ServiceType.LVM, ) self.megaservice.add(embedding).add(retriever).add(rerank).add(lvm) self.megaservice.flow_to(embedding, retriever) self.megaservice.flow_to(retriever, rerank) self.megaservice.flow_to(rerank, lvm) async def handle_request(self, request: Request): data = await request.json() stream_opt = bool(data.get("stream", False)) chat_request = ChatCompletionRequest.model_validate(data) prompt = handle_message(chat_request.messages) parameters = LLMParams( max_new_tokens=chat_request.max_tokens if chat_request.max_tokens else 1024, top_k=chat_request.top_k if chat_request.top_k else 10, top_p=chat_request.top_p if chat_request.top_p else 0.95, temperature=chat_request.temperature if chat_request.temperature else 0.01, frequency_penalty=chat_request.frequency_penalty if chat_request.frequency_penalty else 0.0, presence_penalty=chat_request.presence_penalty if chat_request.presence_penalty else 0.0, repetition_penalty=chat_request.repetition_penalty if chat_request.repetition_penalty else 1.03, stream=stream_opt, chat_template=chat_request.chat_template if chat_request.chat_template else None, ) result_dict, runtime_graph = await self.megaservice.schedule( initial_inputs={"input": prompt}, llm_parameters=parameters ) for node, response in result_dict.items(): # Here it suppose the last microservice in the megaservice is LVM. if ( isinstance(response, StreamingResponse) and node == list(self.megaservice.services.keys())[-1] and self.megaservice.services[node].service_type == ServiceType.LVM ): return response last_node = runtime_graph.all_leaves()[-1] response = result_dict[last_node]["text"] choices = [] usage = UsageInfo() choices.append( ChatCompletionResponseChoice( index=0, message=ChatMessage(role="assistant", content=response), finish_reason="stop", ) ) return ChatCompletionResponse(model="videoqna", choices=choices, usage=usage) def start(self): self.service = MicroService( self.__class__.__name__, service_role=ServiceRoleType.MEGASERVICE, host=self.host, port=self.port, endpoint=self.endpoint, input_datatype=ChatCompletionRequest, output_datatype=ChatCompletionResponse, ) self.service.add_route(self.endpoint, self.handle_request, methods=["POST"]) self.service.start() if __name__ == "__main__": videoqna = VideoQnAService(port=MEGA_SERVICE_PORT) videoqna.add_remote_service() videoqna.start()