#!/bin/bash # Copyright (C) 2024 Intel Corporation # SPDX-License-Identifier: Apache-2.0 set -e IMAGE_REPO=${IMAGE_REPO:-"opea"} IMAGE_TAG=${IMAGE_TAG:-"latest"} echo "REGISTRY=IMAGE_REPO=${IMAGE_REPO}" echo "TAG=IMAGE_TAG=${IMAGE_TAG}" export REGISTRY=${IMAGE_REPO} export TAG=${IMAGE_TAG} export MODEL_CACHE=${model_cache:-"./data"} WORKPATH=$(dirname "$PWD") LOG_PATH="$WORKPATH/tests" ip_address=$(hostname -I | awk '{print $1}') function build_docker_images() { opea_branch=${opea_branch:-"main"} cd $WORKPATH/docker_image_build git clone --depth 1 --branch ${opea_branch} https://github.com/opea-project/GenAIComps.git pushd GenAIComps echo "GenAIComps test commit is $(git rev-parse HEAD)" docker build --no-cache -t ${REGISTRY}/comps-base:${TAG} --build-arg https_proxy=$https_proxy --build-arg http_proxy=$http_proxy -f Dockerfile . popd && sleep 1s echo "Build all the images with --no-cache, check docker_image_build.log for details..." service_list="chatqna chatqna-ui dataprep retriever nginx" docker compose -f build.yaml build ${service_list} --no-cache > ${LOG_PATH}/docker_image_build.log docker images && sleep 1s } function start_services() { cd $WORKPATH/docker_compose/intel/cpu/xeon export EMBEDDING_MODEL_ID="BAAI/bge-base-en-v1.5" export RERANK_MODEL_ID="BAAI/bge-reranker-base" export LLM_MODEL_ID="meta-llama/Meta-Llama-3-8B-Instruct" export INDEX_NAME="rag-redis" export HUGGINGFACEHUB_API_TOKEN=${HUGGINGFACEHUB_API_TOKEN} export JAEGER_IP=$(ip route get 8.8.8.8 | grep -oP 'src \K[^ ]+') export OTEL_EXPORTER_OTLP_TRACES_ENDPOINT=grpc://$JAEGER_IP:4317 export TELEMETRY_ENDPOINT=http://$JAEGER_IP:4318/v1/traces # Start Docker Containers docker compose -f compose_tgi.yaml -f compose_tgi.telemetry.yaml up -d > ${LOG_PATH}/start_services_with_compose.log n=0 until [[ "$n" -ge 100 ]]; do docker logs tgi-service > ${LOG_PATH}/tgi_service_start.log if grep -q Connected ${LOG_PATH}/tgi_service_start.log; then break fi sleep 5s n=$((n+1)) done } function validate_service() { local URL="$1" local EXPECTED_RESULT="$2" local SERVICE_NAME="$3" local DOCKER_NAME="$4" local INPUT_DATA="$5" if [[ $SERVICE_NAME == *"dataprep_upload_file"* ]]; then cd $LOG_PATH HTTP_RESPONSE=$(curl --silent --write-out "HTTPSTATUS:%{http_code}" -X POST -F 'files=@./dataprep_file.txt' -H 'Content-Type: multipart/form-data' "$URL") elif [[ $SERVICE_NAME == *"dataprep_upload_link"* ]]; then HTTP_RESPONSE=$(curl --silent --write-out "HTTPSTATUS:%{http_code}" -X POST -F 'link_list=["https://www.ces.tech/"]' "$URL") elif [[ $SERVICE_NAME == *"dataprep_get"* ]]; then HTTP_RESPONSE=$(curl --silent --write-out "HTTPSTATUS:%{http_code}" -X POST -H 'Content-Type: application/json' "$URL") elif [[ $SERVICE_NAME == *"dataprep_del"* ]]; then HTTP_RESPONSE=$(curl --silent --write-out "HTTPSTATUS:%{http_code}" -X POST -d '{"file_path": "all"}' -H 'Content-Type: application/json' "$URL") else HTTP_RESPONSE=$(curl --silent --write-out "HTTPSTATUS:%{http_code}" -X POST -d "$INPUT_DATA" -H 'Content-Type: application/json' "$URL") fi HTTP_STATUS=$(echo $HTTP_RESPONSE | tr -d '\n' | sed -e 's/.*HTTPSTATUS://') RESPONSE_BODY=$(echo $HTTP_RESPONSE | sed -e 's/HTTPSTATUS\:.*//g') docker logs ${DOCKER_NAME} >> ${LOG_PATH}/${SERVICE_NAME}.log # check response status if [ "$HTTP_STATUS" -ne "200" ]; then echo "[ $SERVICE_NAME ] HTTP status is not 200. Received status was $HTTP_STATUS" exit 1 else echo "[ $SERVICE_NAME ] HTTP status is 200. Checking content..." fi # check response body if [[ "$RESPONSE_BODY" != *"$EXPECTED_RESULT"* ]]; then echo "[ $SERVICE_NAME ] Content does not match the expected result: $RESPONSE_BODY" exit 1 else echo "[ $SERVICE_NAME ] Content is as expected." fi sleep 1s } function validate_microservices() { # Check if the microservices are running correctly. # tei for embedding service validate_service \ "${ip_address}:6006/embed" \ "[[" \ "tei-embedding" \ "tei-embedding-server" \ '{"inputs":"What is Deep Learning?"}' sleep 1m # retrieval can't curl as expected, try to wait for more time # test /v1/dataprep upload file echo "Deep learning is a subset of machine learning that utilizes neural networks with multiple layers to analyze various levels of abstract data representations. It enables computers to identify patterns and make decisions with minimal human intervention by learning from large amounts of data." > $LOG_PATH/dataprep_file.txt validate_service \ "http://${ip_address}:6007/v1/dataprep/ingest" \ "Data preparation succeeded" \ "dataprep_upload_file" \ "dataprep-redis-server" # test /v1/dataprep upload link validate_service \ "http://${ip_address}:6007/v1/dataprep/ingest" \ "Data preparation succeeded" \ "dataprep_upload_link" \ "dataprep-redis-server" # test /v1/dataprep/get_file validate_service \ "http://${ip_address}:6007/v1/dataprep/get" \ '{"name":' \ "dataprep_get" \ "dataprep-redis-server" # test /v1/dataprep/delete_file validate_service \ "http://${ip_address}:6007/v1/dataprep/delete" \ '{"status":true}' \ "dataprep_del" \ "dataprep-redis-server" # retrieval microservice test_embedding=$(python3 -c "import random; embedding = [random.uniform(-1, 1) for _ in range(768)]; print(embedding)") validate_service \ "${ip_address}:7000/v1/retrieval" \ "retrieved_docs" \ "retrieval-microservice" \ "retriever-redis-server" \ "{\"text\":\"What is the revenue of Nike in 2023?\",\"embedding\":${test_embedding}}" # tei for rerank microservice validate_service \ "${ip_address}:8808/rerank" \ '{"index":1,"score":' \ "tei-rerank" \ "tei-reranking-server" \ '{"query":"What is Deep Learning?", "texts": ["Deep Learning is not...", "Deep learning is..."]}' # tgi for llm service validate_service \ "${ip_address}:9009/v1/chat/completions" \ "content" \ "tgi-llm" \ "tgi-service" \ '{"model": "meta-llama/Meta-Llama-3-8B-Instruct", "messages": [{"role": "user", "content": "What is Deep Learning?"}], "max_tokens": 17}' } function validate_megaservice() { # Curl the Mega Service validate_service \ "${ip_address}:8888/v1/chatqna" \ "Nike" \ "chatqna-megaservice" \ "chatqna-xeon-backend-server" \ '{"messages": "What is the revenue of Nike in 2023?"}' } function validate_frontend() { echo "[ TEST INFO ]: --------- frontend test started ---------" cd $WORKPATH/ui/svelte local conda_env_name="OPEA_e2e" export PATH=${HOME}/miniforge3/bin/:$PATH if conda info --envs | grep -q "$conda_env_name"; then echo "$conda_env_name exist!" else conda create -n ${conda_env_name} python=3.12 -y fi source activate ${conda_env_name} echo "[ TEST INFO ]: --------- conda env activated ---------" sed -i "s/localhost/$ip_address/g" playwright.config.ts conda install -c conda-forge nodejs=22.6.0 -y npm install && npm ci && npx playwright install --with-deps node -v && npm -v && pip list exit_status=0 npx playwright test || exit_status=$? if [ $exit_status -ne 0 ]; then echo "[TEST INFO]: ---------frontend test failed---------" exit $exit_status else echo "[TEST INFO]: ---------frontend test passed---------" fi } function stop_docker() { cd $WORKPATH/docker_compose/intel/cpu/xeon docker compose -f compose_tgi.yaml -f compose_tgi.telemetry.yaml down } function main() { echo "::group::stop_docker" stop_docker echo "::endgroup::" echo "::group::build_docker_images" if [[ "$IMAGE_REPO" == "opea" ]]; then build_docker_images; fi echo "::endgroup::" echo "::group::start_services" start_services echo "::endgroup::" echo "::group::validate_microservices" validate_microservices echo "::endgroup::" echo "::group::validate_megaservice" validate_megaservice echo "::endgroup::" echo "::group::validate_frontend" validate_frontend echo "::endgroup::" echo "::group::stop_docker" stop_docker echo "::endgroup::" docker system prune -f } main