# Copyright (C) 2024 Intel Corporation # SPDX-License-Identifier: Apache-2.0 import os from comps import MegaServiceEndpoint, MicroService, ServiceOrchestrator, ServiceRoleType, ServiceType from comps.cores.mega.utils import handle_message from comps.cores.proto.api_protocol import ( ChatCompletionRequest, ChatCompletionResponse, ChatCompletionResponseChoice, ChatMessage, UsageInfo, ) from comps.cores.proto.docarray import LLMParams, RerankerParms, RetrieverParms from fastapi import Request from fastapi.responses import StreamingResponse MEGA_SERVICE_HOST_IP = os.getenv("MEGA_SERVICE_HOST_IP", "0.0.0.0") MEGA_SERVICE_PORT = int(os.getenv("MEGA_SERVICE_PORT", 8888)) EMBEDDING_SERVICE_HOST_IP = os.getenv("EMBEDDING_SERVICE_HOST_IP", "0.0.0.0") EMBEDDING_SERVICE_PORT = int(os.getenv("EMBEDDING_SERVICE_PORT", 6000)) RETRIEVER_SERVICE_HOST_IP = os.getenv("RETRIEVER_SERVICE_HOST_IP", "0.0.0.0") RETRIEVER_SERVICE_PORT = int(os.getenv("RETRIEVER_SERVICE_PORT", 7000)) RERANK_SERVICE_HOST_IP = os.getenv("RERANK_SERVICE_HOST_IP", "0.0.0.0") RERANK_SERVICE_PORT = int(os.getenv("RERANK_SERVICE_PORT", 8000)) LLM_SERVICE_HOST_IP = os.getenv("LLM_SERVICE_HOST_IP", "0.0.0.0") LLM_SERVICE_PORT = int(os.getenv("LLM_SERVICE_PORT", 9000)) class ChatQnAService: def __init__(self, host="0.0.0.0", port=8000): self.host = host self.port = port self.megaservice = ServiceOrchestrator() self.endpoint = str(MegaServiceEndpoint.CHAT_QNA) def add_remote_service(self): embedding = MicroService( name="embedding", host=EMBEDDING_SERVICE_HOST_IP, port=EMBEDDING_SERVICE_PORT, endpoint="/v1/embeddings", use_remote_service=True, service_type=ServiceType.EMBEDDING, ) retriever = MicroService( name="retriever", host=RETRIEVER_SERVICE_HOST_IP, port=RETRIEVER_SERVICE_PORT, endpoint="/v1/retrieval", use_remote_service=True, service_type=ServiceType.RETRIEVER, ) rerank = MicroService( name="rerank", host=RERANK_SERVICE_HOST_IP, port=RERANK_SERVICE_PORT, endpoint="/v1/reranking", use_remote_service=True, service_type=ServiceType.RERANK, ) llm = MicroService( name="llm", host=LLM_SERVICE_HOST_IP, port=LLM_SERVICE_PORT, endpoint="/v1/chat/completions", use_remote_service=True, service_type=ServiceType.LLM, ) self.megaservice.add(embedding).add(retriever).add(rerank).add(llm) self.megaservice.flow_to(embedding, retriever) self.megaservice.flow_to(retriever, rerank) self.megaservice.flow_to(rerank, llm) async def handle_request(self, request: Request): data = await request.json() stream_opt = data.get("stream", True) chat_request = ChatCompletionRequest.parse_obj(data) prompt = handle_message(chat_request.messages) parameters = LLMParams( max_tokens=chat_request.max_tokens if chat_request.max_tokens else 1024, top_k=chat_request.top_k if chat_request.top_k else 10, top_p=chat_request.top_p if chat_request.top_p else 0.95, temperature=chat_request.temperature if chat_request.temperature else 0.01, frequency_penalty=chat_request.frequency_penalty if chat_request.frequency_penalty else 0.0, presence_penalty=chat_request.presence_penalty if chat_request.presence_penalty else 0.0, repetition_penalty=chat_request.repetition_penalty if chat_request.repetition_penalty else 1.03, stream=stream_opt, chat_template=chat_request.chat_template if chat_request.chat_template else None, ) retriever_parameters = RetrieverParms( search_type=chat_request.search_type if chat_request.search_type else "similarity", k=chat_request.k if chat_request.k else 4, distance_threshold=chat_request.distance_threshold if chat_request.distance_threshold else None, fetch_k=chat_request.fetch_k if chat_request.fetch_k else 20, lambda_mult=chat_request.lambda_mult if chat_request.lambda_mult else 0.5, score_threshold=chat_request.score_threshold if chat_request.score_threshold else 0.2, ) reranker_parameters = RerankerParms( top_n=chat_request.top_n if chat_request.top_n else 1, ) result_dict, runtime_graph = await self.megaservice.schedule( initial_inputs={"text": prompt}, llm_parameters=parameters, retriever_parameters=retriever_parameters, reranker_parameters=reranker_parameters, ) for node, response in result_dict.items(): if isinstance(response, StreamingResponse): return response last_node = runtime_graph.all_leaves()[-1] response = result_dict[last_node]["text"] choices = [] usage = UsageInfo() choices.append( ChatCompletionResponseChoice( index=0, message=ChatMessage(role="assistant", content=response), finish_reason="stop", ) ) return ChatCompletionResponse(model="chatqna", choices=choices, usage=usage) def start(self): self.service = MicroService( self.__class__.__name__, service_role=ServiceRoleType.MEGASERVICE, host=self.host, port=self.port, endpoint=self.endpoint, input_datatype=ChatCompletionRequest, output_datatype=ChatCompletionResponse, ) self.service.add_route(self.endpoint, self.handle_request, methods=["POST"]) self.service.start() if __name__ == "__main__": chatqna = ChatQnAService(port=MEGA_SERVICE_PORT) chatqna.add_remote_service() chatqna.start()