# Copyright (C) 2024 Intel Corporation # SPDX-License-Identifier: Apache-2.0 import argparse import json import os import re from comps import MegaServiceEndpoint, MicroService, ServiceOrchestrator, ServiceRoleType, ServiceType from comps.cores.mega.utils import handle_message from comps.cores.proto.api_protocol import ( ChatCompletionRequest, ChatCompletionResponse, ChatCompletionResponseChoice, ChatMessage, EmbeddingRequest, UsageInfo, ) from comps.cores.proto.docarray import LLMParams, RetrieverParms, TextDoc from fastapi import Request from fastapi.responses import StreamingResponse from langchain_core.prompts import PromptTemplate class ChatTemplate: @staticmethod def generate_rag_prompt(question, documents): context_str = "\n".join(documents) if context_str and len(re.findall("[\u4e00-\u9fff]", context_str)) / len(context_str) >= 0.3: # chinese context template = """ ### 你将扮演一个乐于助人、尊重他人并诚实的助手,你的目标是帮助用户解答问题。有效地利用来自本地知识库的搜索结果。确保你的回答中只包含相关信息。如果你不确定问题的答案,请避免分享不准确的信息。 ### 搜索结果:{context} ### 问题:{question} ### 回答: """ else: template = """ ### You are a helpful, respectful and honest assistant to help the user with questions. \ Please combine the following intermediate answers into a final, conscise and coherent response. \ refer to the search results obtained from the local knowledge base. \ If you don't know the answer to a question, please don't share false information. \n ### Intermediate answers: {context} \n ### Question: {question} \n ### Answer: """ return template.format(context=context_str, question=question) MEGA_SERVICE_PORT = int(os.getenv("MEGA_SERVICE_PORT", 8888)) RETRIEVER_SERVICE_HOST_IP = os.getenv("RETRIEVER_SERVICE_HOST_IP", "0.0.0.0") RETRIEVER_SERVICE_PORT = int(os.getenv("RETRIEVER_SERVICE_PORT", 7000)) LLM_SERVER_HOST_IP = os.getenv("LLM_SERVER_HOST_IP", "0.0.0.0") LLM_SERVER_PORT = int(os.getenv("LLM_SERVER_PORT", 80)) LLM_MODEL_ID = os.getenv("LLM_MODEL_ID", "meta-llama/Meta-Llama-3.1-8B-Instruct") def align_inputs(self, inputs, cur_node, runtime_graph, llm_parameters_dict, **kwargs): if self.services[cur_node].service_type == ServiceType.RETRIEVER: print("make no changes for retriever inputs. AlreadyCheckCompletionRequest") elif self.services[cur_node].service_type == ServiceType.LLM: # convert TGI/vLLM to unified OpenAI /v1/chat/completions format next_inputs = {} next_inputs["model"] = LLM_MODEL_ID next_inputs["messages"] = [{"role": "user", "content": inputs["inputs"]}] next_inputs["max_tokens"] = llm_parameters_dict["max_tokens"] next_inputs["top_p"] = llm_parameters_dict["top_p"] next_inputs["stream"] = inputs["stream"] next_inputs["frequency_penalty"] = inputs["frequency_penalty"] # next_inputs["presence_penalty"] = inputs["presence_penalty"] # next_inputs["repetition_penalty"] = inputs["repetition_penalty"] next_inputs["temperature"] = inputs["temperature"] inputs = next_inputs print("inputs after align:\n", inputs) return inputs def align_outputs(self, data, cur_node, inputs, runtime_graph, llm_parameters_dict, **kwargs): next_data = {} if self.services[cur_node].service_type == ServiceType.RETRIEVER: docs = [doc["text"] for doc in data["retrieved_docs"]] # handle template # if user provides template, then format the prompt with it # otherwise, use the default template print("outputs before align:\n", inputs) if isinstance(inputs.messages, str): prompt = inputs.messages else: prompt = inputs.messages[0]["content"] chat_template = llm_parameters_dict["chat_template"] if chat_template: prompt_template = PromptTemplate.from_template(chat_template) input_variables = prompt_template.input_variables if sorted(input_variables) == ["context", "question"]: prompt = prompt_template.format(question=prompt, context="\n".join(docs)) elif input_variables == ["question"]: prompt = prompt_template.format(question=prompt) else: print(f"{prompt_template} not used, we only support 2 input variables ['question', 'context']") prompt = ChatTemplate.generate_rag_prompt(prompt, docs) else: print("no rerank no chat template") prompt = ChatTemplate.generate_rag_prompt(prompt, docs) next_data["inputs"] = prompt else: next_data = data return next_data def align_generator(self, gen, **kwargs): # OpenAI response format # b'data:{"id":"","object":"text_completion","created":1725530204,"model":"meta-llama/Meta-Llama-3-8B-Instruct","system_fingerprint":"2.0.1-native","choices":[{"index":0,"delta":{"role":"assistant","content":"?"},"logprobs":null,"finish_reason":null}]}\n\n' print("generator in align generator:\n", gen) for line in gen: line = line.decode("utf-8") start = line.find("{") end = line.rfind("}") + 1 json_str = line[start:end] try: # sometimes yield empty chunk, do a fallback here json_data = json.loads(json_str) if json_data["choices"][0]["finish_reason"] != "eos_token": yield f"data: {repr(json_data['choices'][0]['delta']['content'].encode('utf-8'))}\n\n" except Exception as e: yield f"data: {repr(json_str.encode('utf-8'))}\n\n" yield "data: [DONE]\n\n" class GraphRAGService: def __init__(self, host="0.0.0.0", port=8000): self.host = host self.port = port ServiceOrchestrator.align_inputs = align_inputs ServiceOrchestrator.align_outputs = align_outputs ServiceOrchestrator.align_generator = align_generator self.megaservice = ServiceOrchestrator() self.endpoint = str(MegaServiceEndpoint.GRAPH_RAG) def add_remote_service(self): retriever = MicroService( name="retriever", host=RETRIEVER_SERVICE_HOST_IP, port=RETRIEVER_SERVICE_PORT, endpoint="/v1/retrieval", use_remote_service=True, service_type=ServiceType.RETRIEVER, ) llm = MicroService( name="llm", host=LLM_SERVER_HOST_IP, port=LLM_SERVER_PORT, endpoint="/v1/chat/completions", use_remote_service=True, service_type=ServiceType.LLM, ) self.megaservice.add(retriever).add(llm) self.megaservice.flow_to(retriever, llm) async def handle_request(self, request: Request): data = await request.json() stream_opt = data.get("stream", True) chat_request = ChatCompletionRequest.parse_obj(data) def parser_input(data, TypeClass, key): chat_request = None try: chat_request = TypeClass.parse_obj(data) query = getattr(chat_request, key) except: query = None return query, chat_request query = None for key, TypeClass in zip(["text", "input", "messages"], [TextDoc, EmbeddingRequest, ChatCompletionRequest]): query, chat_request = parser_input(data, TypeClass, key) if query is not None: break if query is None: raise ValueError(f"Unknown request type: {data}") if chat_request is None: raise ValueError(f"Unknown request type: {data}") prompt = handle_message(chat_request.messages) parameters = LLMParams( max_tokens=chat_request.max_tokens if chat_request.max_tokens else 1024, top_k=chat_request.top_k if chat_request.top_k else 10, top_p=chat_request.top_p if chat_request.top_p else 0.95, temperature=chat_request.temperature if chat_request.temperature else 0.01, frequency_penalty=chat_request.frequency_penalty if chat_request.frequency_penalty else 0.0, presence_penalty=chat_request.presence_penalty if chat_request.presence_penalty else 0.0, repetition_penalty=chat_request.repetition_penalty if chat_request.repetition_penalty else 1.03, stream=stream_opt, chat_template=chat_request.chat_template if chat_request.chat_template else None, ) retriever_parameters = RetrieverParms( search_type=chat_request.search_type if chat_request.search_type else "similarity", k=chat_request.k if chat_request.k else 4, distance_threshold=chat_request.distance_threshold if chat_request.distance_threshold else None, fetch_k=chat_request.fetch_k if chat_request.fetch_k else 20, lambda_mult=chat_request.lambda_mult if chat_request.lambda_mult else 0.5, score_threshold=chat_request.score_threshold if chat_request.score_threshold else 0.2, ) initial_inputs = chat_request result_dict, runtime_graph = await self.megaservice.schedule( initial_inputs=initial_inputs, llm_parameters=parameters, retriever_parameters=retriever_parameters, ) for node, response in result_dict.items(): if isinstance(response, StreamingResponse): return response last_node = runtime_graph.all_leaves()[-1] response_content = result_dict[last_node]["choices"][0]["message"]["content"] choices = [] usage = UsageInfo() choices.append( ChatCompletionResponseChoice( index=0, message=ChatMessage(role="assistant", content=response_content), finish_reason="stop", ) ) return ChatCompletionResponse(model="chatqna", choices=choices, usage=usage) def start(self): self.service = MicroService( self.__class__.__name__, service_role=ServiceRoleType.MEGASERVICE, host=self.host, port=self.port, endpoint=self.endpoint, input_datatype=ChatCompletionRequest, output_datatype=ChatCompletionResponse, ) self.service.add_route(self.endpoint, self.handle_request, methods=["POST"]) self.service.start() if __name__ == "__main__": graphrag = GraphRAGService(port=MEGA_SERVICE_PORT) graphrag.add_remote_service() graphrag.start()