Compare commits

...

23 Commits

Author SHA1 Message Date
Zhenzhong1
09fa201b30 76 -> 80 2024-09-28 21:29:04 -07:00
sri-intel
2de1bfc5bb Bug fix for issue #881 (#882)
Signed-off-by: srinarayan-srikanthan <srinarayan.srikanthan@intel.com>
2024-09-27 13:06:02 +08:00
sri-intel
75df2c9979 docker install instruction for csp (#843)
Signed-off-by: sri <srinarayan.srikanthan@intel.com>
Signed-off-by: srinarayan-srikanthan <srinarayan.srikanthan@intel.com>
2024-09-27 13:00:10 +08:00
minmin-intel
62e06a0aff Update DocIndexRetriever Example to allow user passing in retriever/reranker params (#880)
Signed-off-by: minmin-intel <minmin.hou@intel.com>
Co-authored-by: pre-commit-ci[bot] <66853113+pre-commit-ci[bot]@users.noreply.github.com>
2024-09-27 10:21:54 +08:00
jotpalch
bd32b03e3c Doc: Update folder path to correct location in "Deploy ChatQnA in Kubernetes" (#875) 2024-09-26 14:38:22 +08:00
xiguiw
9d0b49c2d6 [doc] Update AIPC document (#874)
Signed-off-by: Wang, Xigui <xigui.wang@intel.com>
Co-authored-by: pre-commit-ci[bot] <66853113+pre-commit-ci[bot]@users.noreply.github.com>
2024-09-26 14:28:16 +08:00
XinyaoWa
75ce2a3ca6 remove old knowledgegraphs link (#876)
Signed-off-by: Xinyao Wang <xinyao.wang@intel.com>
2024-09-26 14:23:42 +08:00
David Kinder
99c10933b4 doc: fix doc heading (#873)
Signed-off-by: David B. Kinder <david.b.kinder@intel.com>
2024-09-26 12:33:57 +09:00
Pranav Singh
8bcd82e82d [docs] Fixes Typo in Gaudi Docker Images Setup (#868)
Signed-off-by: Pranav Singh <pranav.singh@intel.com>
2024-09-25 17:47:59 +08:00
Zhenzhong1
c1038d2193 [ChatQnA] Deploy ChatQnA for benchmarking with different configurations. (#870) 2024-09-25 16:47:44 +08:00
lvliang-intel
33b9d4e421 Remove redundant code and update tgi version (#871)
Signed-off-by: lvliang-intel <liang1.lv@intel.com>
2024-09-25 15:33:33 +08:00
chen, suyue
c9553c6f9a Clean up CI jobs (#872)
Signed-off-by: chensuyue <suyue.chen@intel.com>
2024-09-25 14:59:14 +08:00
David Kinder
3e796ba73d doc: fix missing references to README.md (#860)
Signed-off-by: David B. Kinder <david.b.kinder@intel.com>
2024-09-24 21:40:42 +08:00
Hoong Tee, Yeoh
5ed776709d [docker_images_list]: Update images information (#864)
Signed-off-by: Yeoh, Hoong Tee <hoong.tee.yeoh@intel.com>
Co-authored-by: pre-commit-ci[bot] <66853113+pre-commit-ci[bot]@users.noreply.github.com>
2024-09-24 21:39:42 +08:00
Steve Zhang
954a22051b Make all xeon tgi image version consistent (#851)
Co-authored-by: pre-commit-ci[bot] <66853113+pre-commit-ci[bot]@users.noreply.github.com>
2024-09-24 11:19:37 +08:00
Hoong Tee, Yeoh
6f4b00f829 Documentation README update for ProductivitySuite example (#863)
Signed-off-by: Yeoh, Hoong Tee <hoong.tee.yeoh@intel.com>
Co-authored-by: pre-commit-ci[bot] <66853113+pre-commit-ci[bot]@users.noreply.github.com>
2024-09-23 22:39:14 +08:00
lvliang-intel
3fb60608b3 Use official tei gaudi image and update tgi gaudi version (#810)
Signed-off-by: lvliang-intel <liang1.lv@intel.com>
Co-authored-by: pre-commit-ci[bot] <66853113+pre-commit-ci[bot]@users.noreply.github.com>
2024-09-23 17:52:56 +08:00
Letong Han
c35fe0b429 [Doc] Update ChatQnA README for Nginx Docker Image (#862)
Signed-off-by: letonghan <letong.han@intel.com>
2024-09-23 12:25:30 +09:00
lvliang-intel
28f5e4a268 Add docker based benchmark instructions for ChatQnA (#859)
Signed-off-by: lvliang-intel <liang1.lv@intel.com>
Co-authored-by: pre-commit-ci[bot] <66853113+pre-commit-ci[bot]@users.noreply.github.com>
2024-09-23 10:14:44 +08:00
Letong Han
d55a33dda1 [ProductivitySuite] Fix CD Issue (#858)
Signed-off-by: letonghan <letong.han@intel.com>
2024-09-20 16:20:01 +08:00
XinyaoWa
daf2a4fad7 Fix SearchQnA tests bug (#857)
Signed-off-by: Xinyao Wang <xinyao.wang@intel.com>
2024-09-20 16:16:46 +08:00
chen, suyue
3ce395582b print image build test commit (#856)
Signed-off-by: chensuyue <suyue.chen@intel.com>
Co-authored-by: pre-commit-ci[bot] <66853113+pre-commit-ci[bot]@users.noreply.github.com>
2024-09-20 15:34:04 +08:00
Letong Han
7eaab93d0b [Doc] Refine ChatQnA README (#855)
Signed-off-by: letonghan <letong.han@intel.com>
2024-09-20 11:20:20 +08:00
145 changed files with 1820 additions and 439 deletions

View File

@@ -46,33 +46,30 @@ jobs:
- name: Clean Up Working Directory
run: sudo rm -rf ${{github.workspace}}/*
- name: Get checkout ref
- name: Get Checkout Ref
run: |
if [ "${{ github.event_name }}" == "pull_request" ] || [ "${{ github.event_name }}" == "pull_request_target" ]; then
echo "CHECKOUT_REF=refs/pull/${{ github.event.number }}/merge" >> $GITHUB_ENV
else
echo "CHECKOUT_REF=${{ github.ref }}" >> $GITHUB_ENV
fi
echo "checkout ref ${{ env.CHECKOUT_REF }}"
- name: Checkout out Repo
- name: Checkout out GenAIExamples
uses: actions/checkout@v4
with:
ref: ${{ env.CHECKOUT_REF }}
fetch-depth: 0
- name: Clone required Repo
- name: Clone Required Repo
run: |
cd ${{ github.workspace }}/${{ inputs.example }}/docker_image_build
docker_compose_path=${{ github.workspace }}/${{ inputs.example }}/docker_image_build/build.yaml
if [[ $(grep -c "tei-gaudi:" ${docker_compose_path}) != 0 ]]; then
git clone https://github.com/huggingface/tei-gaudi.git
fi
if [[ $(grep -c "vllm:" ${docker_compose_path}) != 0 ]]; then
git clone https://github.com/vllm-project/vllm.git
cd vllm && git rev-parse HEAD && cd ../
fi
git clone https://github.com/opea-project/GenAIComps.git
cd GenAIComps && git checkout ${{ inputs.opea_branch }} && cd ../
cd GenAIComps && git checkout ${{ inputs.opea_branch }} && git rev-parse HEAD && cd ../
- name: Build Image
if: ${{ fromJSON(inputs.build) }}

View File

@@ -11,23 +11,23 @@ on:
required: true
type: string
examples:
default: "Translation"
description: 'List of examples to publish [AudioQnA,ChatQnA,CodeGen,CodeTrans,DocSum,FaqGen,SearchQnA,Translation]'
default: ""
description: 'List of examples to publish [AgentQnA,AudioQnA,ChatQnA,CodeGen,CodeTrans,DocIndexRetriever,DocSum,FaqGen,InstructionTuning,MultimodalQnA,ProductivitySuite,RerankFinetuning,SearchQnA,Translation,VideoQnA,VisualQnA]'
required: false
type: string
images:
default: "gmcmanager,gmcrouter"
description: 'List of images to publish [gmcmanager,gmcrouter, ...]'
default: ""
description: 'List of images to publish [gmcmanager,gmcrouter]'
required: false
type: string
tag:
default: "v0.9"
description: "Tag to publish"
default: "rc"
description: "Tag to publish, like [1.0rc]"
required: true
type: string
publish_tags:
default: "latest,v0.9"
description: 'Tag list apply to publish images'
default: "latest,1.x"
description: "Tag list apply to publish images, like [latest,1.0]"
required: false
type: string

View File

@@ -11,13 +11,13 @@ on:
required: true
type: string
examples:
default: "ChatQnA"
description: 'List of examples to scan [AudioQnA,ChatQnA,CodeGen,CodeTrans,DocSum,FaqGen,SearchQnA,Translation]'
default: ""
description: 'List of examples to publish "AgentQnA,AudioQnA,ChatQnA,CodeGen,CodeTrans,DocIndexRetriever,DocSum,FaqGen,InstructionTuning,MultimodalQnA,ProductivitySuite,RerankFinetuning,SearchQnA,Translation,VideoQnA,VisualQnA"'
required: false
type: string
images:
default: "gmcmanager,gmcrouter"
description: 'List of images to scan [gmcmanager,gmcrouter, ...]'
default: ""
description: 'List of images to publish "gmcmanager,gmcrouter"'
required: false
type: string
tag:

View File

@@ -1,54 +0,0 @@
# Copyright (C) 2024 Intel Corporation
# SPDX-License-Identifier: Apache-2.0
name: Manifests Validate
on:
pull_request:
branches: [main]
types: [opened, reopened, ready_for_review, synchronize] # added `ready_for_review` since draft is skipped
paths:
- "**/kubernetes/manifests/**"
- .github/workflows/manifest-validate.yml
workflow_dispatch:
# If there is a new commit, the previous jobs will be canceled
concurrency:
group: ${{ github.workflow }}-${{ github.event.pull_request.number || github.ref }}
cancel-in-progress: true
env:
MANIFEST_DIR: "manifests"
jobs:
manifests-validate:
runs-on: ubuntu-latest
steps:
- name: Checkout out Repo
uses: actions/checkout@v4
with:
fetch-depth: 0
- name: changed files
id: changed_files
run: |
set -xe
changed_folder=$(git diff --name-only ${{ github.event.pull_request.base.sha }} ${{ github.event.pull_request.head.sha }} | \
grep "kubernetes/manifests" | grep -vE '.github|README.md|*.txt|*.sh' | cut -d'/' -f1 | sort -u )
echo "changed_folder: $changed_folder"
if [ -z "$changed_folder" ]; then
echo "No changes in manifests folder"
echo "SKIP=true" >> $GITHUB_OUTPUT
exit 0
fi
echo "SKIP=false" >> $GITHUB_OUTPUT
for folder in $changed_folder; do
folder_str="$folder_str $folder/kubernetes/manifests/"
done
echo "folder_str=$folder_str"
echo "folder_str=$folder_str" >> $GITHUB_ENV
- uses: docker://ghcr.io/yannh/kubeconform:latest
if: steps.changed_files.outputs.SKIP == 'false'
with:
args: "-summary -output json ${{env.folder_str}}"

View File

@@ -9,7 +9,6 @@ on:
paths:
- "**.py"
- "**Dockerfile"
workflow_dispatch:
concurrency:
group: ${{ github.workflow }}-${{ github.ref }}-on-push

View File

@@ -18,8 +18,6 @@ repos:
SearchQnA/ui/svelte/tsconfig.json|
DocSum/ui/svelte/tsconfig.json
)$
- id: check-yaml
args: [--allow-multiple-documents]
- id: debug-statements
- id: requirements-txt-fixer
- id: trailing-whitespace

View File

@@ -103,4 +103,4 @@ curl http://${ip_address}:9090/v1/chat/completions -X POST -H "Content-Type: app
## How to register your own tools with agent
You can take a look at the tools yaml and python files in this example. For more details, please refer to the "Provide your own tools" section in the instructions [here](https://github.com/opea-project/GenAIComps/tree/main/comps/agent/langchain#5-customize-agent-strategy).
You can take a look at the tools yaml and python files in this example. For more details, please refer to the "Provide your own tools" section in the instructions [here](https://github.com/opea-project/GenAIComps/tree/main/comps/agent/langchain/README.md#5-customize-agent-strategy).

View File

@@ -3,7 +3,7 @@
services:
tgi-server:
image: ghcr.io/huggingface/tgi-gaudi:2.0.4
image: ghcr.io/huggingface/tgi-gaudi:2.0.5
container_name: tgi-server
ports:
- "8085:80"
@@ -13,12 +13,16 @@ services:
no_proxy: ${no_proxy}
http_proxy: ${http_proxy}
https_proxy: ${https_proxy}
HF_TOKEN: ${HUGGINGFACEHUB_API_TOKEN}
HUGGING_FACE_HUB_TOKEN: ${HUGGINGFACEHUB_API_TOKEN}
HF_HUB_DISABLE_PROGRESS_BARS: 1
HF_HUB_ENABLE_HF_TRANSFER: 0
HABANA_VISIBLE_DEVICES: all
OMPI_MCA_btl_vader_single_copy_mechanism: none
PT_HPU_ENABLE_LAZY_COLLECTIVES: true
ENABLE_HPU_GRAPH: true
LIMIT_HPU_GRAPH: true
USE_FLASH_ATTENTION: true
FLASH_ATTENTION_RECOMPUTE: true
runtime: habana
cap_add:
- SYS_NICE

View File

@@ -14,7 +14,7 @@ We evaluate the WER (Word Error Rate) metric of the ASR microservice.
### Launch ASR microservice
Launch the ASR microserice with the following commands. For more details please refer to [doc](https://github.com/opea-project/GenAIComps/tree/main/comps/asr).
Launch the ASR microserice with the following commands. For more details please refer to [doc](https://github.com/opea-project/GenAIComps/tree/main/comps/asr/whisper/README.md).
```bash
git clone https://github.com/opea-project/GenAIComps

View File

@@ -51,7 +51,7 @@ services:
environment:
TTS_ENDPOINT: ${TTS_ENDPOINT}
tgi-service:
image: ghcr.io/huggingface/tgi-gaudi:2.0.1
image: ghcr.io/huggingface/tgi-gaudi:2.0.5
container_name: tgi-gaudi-server
ports:
- "3006:80"
@@ -61,11 +61,15 @@ services:
no_proxy: ${no_proxy}
http_proxy: ${http_proxy}
https_proxy: ${https_proxy}
HF_TOKEN: ${HUGGINGFACEHUB_API_TOKEN}
HUGGING_FACE_HUB_TOKEN: ${HUGGINGFACEHUB_API_TOKEN}
HF_HUB_DISABLE_PROGRESS_BARS: 1
HF_HUB_ENABLE_HF_TRANSFER: 0
HABANA_VISIBLE_DEVICES: all
OMPI_MCA_btl_vader_single_copy_mechanism: none
ENABLE_HPU_GRAPH: true
LIMIT_HPU_GRAPH: true
USE_FLASH_ATTENTION: true
FLASH_ATTENTION_RECOMPUTE: true
runtime: habana
cap_add:
- SYS_NICE

View File

@@ -4,7 +4,7 @@ This document outlines the deployment process for a AudioQnA application utilizi
The AudioQnA Service leverages a Kubernetes operator called genai-microservices-connector(GMC). GMC supports connecting microservices to create pipelines based on the specification in the pipeline yaml file in addition to allowing the user to dynamically control which model is used in a service such as an LLM or embedder. The underlying pipeline language also supports using external services that may be running in public or private cloud elsewhere.
Install GMC in your Kubernetes cluster, if you have not already done so, by following the steps in Section "Getting Started" at [GMC Install](https://github.com/opea-project/GenAIInfra/tree/main/microservices-connector). Soon as we publish images to Docker Hub, at which point no builds will be required, simplifying install.
Install GMC in your Kubernetes cluster, if you have not already done so, by following the steps in Section "Getting Started" at [GMC Install](https://github.com/opea-project/GenAIInfra/tree/main/microservices-connector/README.md). Soon as we publish images to Docker Hub, at which point no builds will be required, simplifying install.
The AudioQnA application is defined as a Custom Resource (CR) file that the above GMC operator acts upon. It first checks if the microservices listed in the CR yaml file are running, if not starts them and then proceeds to connect them. When the AudioQnA pipeline is ready, the service endpoint details are returned, letting you use the application. Should you use "kubectl get pods" commands you will see all the component microservices, in particular `asr`, `tts`, and `llm`.
@@ -25,7 +25,7 @@ The AudioQnA uses the below prebuilt images if you choose a Xeon deployment
Should you desire to use the Gaudi accelerator, two alternate images are used for the embedding and llm services.
For Gaudi:
- tgi-service: ghcr.io/huggingface/tgi-gaudi:1.2.1
- tgi-service: ghcr.io/huggingface/tgi-gaudi:2.0.5
- whisper-gaudi: opea/whisper-gaudi:latest
- speecht5-gaudi: opea/speecht5-gaudi:latest

View File

@@ -247,7 +247,7 @@ spec:
- envFrom:
- configMapRef:
name: audio-qna-config
image: ghcr.io/huggingface/text-generation-inference:2.2.0
image: "ghcr.io/huggingface/text-generation-inference:sha-e4201f4-intel-cpu"
name: llm-dependency-deploy-demo
securityContext:
capabilities:

View File

@@ -271,7 +271,7 @@ spec:
- envFrom:
- configMapRef:
name: audio-qna-config
image: ghcr.io/huggingface/tgi-gaudi:2.0.1
image: ghcr.io/huggingface/tgi-gaudi:2.0.5
name: llm-dependency-deploy-demo
securityContext:
capabilities:
@@ -303,6 +303,14 @@ spec:
value: none
- name: PT_HPU_ENABLE_LAZY_COLLECTIVES
value: 'true'
- name: ENABLE_HPU_GRAPH
value: 'true'
- name: LIMIT_HPU_GRAPH
value: 'true'
- name: USE_FLASH_ATTENTION
value: 'true'
- name: FLASH_ATTENTION_RECOMPUTE
value: 'true'
- name: runtime
value: habana
- name: HABANA_VISIBLE_DEVICES
@@ -315,7 +323,7 @@ spec:
volumes:
- name: model-volume
hostPath:
path: /home/sdp/cesg
path: /mnt/models
type: Directory
- name: shm
emptyDir:

View File

@@ -22,7 +22,7 @@ function build_docker_images() {
service_list="audioqna whisper-gaudi asr llm-tgi speecht5-gaudi tts"
docker compose -f build.yaml build ${service_list} --no-cache > ${LOG_PATH}/docker_image_build.log
docker pull ghcr.io/huggingface/tgi-gaudi:2.0.1
docker pull ghcr.io/huggingface/tgi-gaudi:2.0.5
docker images && sleep 1s
}

View File

@@ -22,7 +22,7 @@ function build_docker_images() {
service_list="audioqna whisper asr llm-tgi speecht5 tts"
docker compose -f build.yaml build ${service_list} --no-cache > ${LOG_PATH}/docker_image_build.log
docker pull ghcr.io/huggingface/tgi-gaudi:2.0.1
docker pull ghcr.io/huggingface/tgi-gaudi:2.0.5
docker images && sleep 1s
}

View File

@@ -16,6 +16,8 @@ Quick Start Deployment Steps:
2. Run Docker Compose.
3. Consume the ChatQnA Service.
Note: If you do not have docker installed you can run this script to install docker : `bash docker_compose/install_docker.sh`
### Quick Start: 1.Setup Environment Variable
To set up environment variables for deploying ChatQnA services, follow these steps:
@@ -74,7 +76,7 @@ In following cases, you could build docker image from source by yourself.
- Failed to download the docker image.
- Use the latest or special version.
- If you want to use a specific version of Docker image.
Please refer to the 'Build Docker Images' in [Guide](docker_compose/intel/cpu/xeon/README.md).
@@ -240,7 +242,7 @@ Refer to the [Kubernetes Guide](./kubernetes/intel/README.md) for instructions o
Install Helm (version >= 3.15) first. Refer to the [Helm Installation Guide](https://helm.sh/docs/intro/install/) for more information.
Refer to the [ChatQnA helm chart](https://github.com/opea-project/GenAIInfra/tree/main/helm-charts/chatqna) for instructions on deploying ChatQnA into Kubernetes on Xeon & Gaudi.
Refer to the [ChatQnA helm chart](https://github.com/opea-project/GenAIInfra/tree/main/helm-charts/chatqna/README.md) for instructions on deploying ChatQnA into Kubernetes on Xeon & Gaudi.
### Deploy ChatQnA on AI PC
@@ -306,7 +308,7 @@ Two ways of consuming ChatQnA Service:
## Troubleshooting
1. If you get errors like "Access Denied", [validate micro service](https://github.com/opea-project/GenAIExamples/tree/main/ChatQnA/docker_compose/intel/cpu/xeon#validate-microservices) first. A simple example:
1. If you get errors like "Access Denied", [validate micro service](https://github.com/opea-project/GenAIExamples/tree/main/ChatQnA/docker_compose/intel/cpu/xeon/README.md#validate-microservices) first. A simple example:
```bash
http_proxy="" curl ${host_ip}:6006/embed -X POST -d '{"inputs":"What is Deep Learning?"}' -H 'Content-Type: application/json'

View File

@@ -29,6 +29,8 @@ Results will be displayed in the terminal and saved as CSV file named `1_stats.c
## Getting Started
We recommend using Kubernetes to deploy the ChatQnA service, as it offers benefits such as load balancing and improved scalability. However, you can also deploy the service using Docker if that better suits your needs. Below is a description of Kubernetes deployment and benchmarking. For instructions on deploying and benchmarking with Docker, please refer to [this section](#benchmark-with-docker).
### Prerequisites
- Install Kubernetes by following [this guide](https://github.com/opea-project/docs/blob/main/guide/installation/k8s_install/k8s_install_kubespray.md).
@@ -88,7 +90,7 @@ find . -name '*.yaml' -type f -exec sed -i "s#\$(RERANK_MODEL_ID)#${RERANK_MODEL
### Benchmark tool preparation
The test uses the [benchmark tool](https://github.com/opea-project/GenAIEval/tree/main/evals/benchmark) to do performance test. We need to set up benchmark tool at the master node of Kubernetes which is k8s-master.
The test uses the [benchmark tool](https://github.com/opea-project/GenAIEval/tree/main/evals/benchmark/README.md) to do performance test. We need to set up benchmark tool at the master node of Kubernetes which is k8s-master.
```bash
# on k8s-master node
@@ -187,10 +189,13 @@ curl -X POST "http://${cluster_ip}:6007/v1/dataprep" \
###### 3.2 Run Benchmark Test
We copy the configuration file [benchmark.yaml](./benchmark.yaml) to `GenAIEval/evals/benchmark/benchmark.yaml` and config `test_suite_config.user_queries` and `test_suite_config.test_output_dir`.
We copy the configuration file [benchmark.yaml](./benchmark.yaml) to `GenAIEval/evals/benchmark/benchmark.yaml` and config `test_suite_config.deployment_type`, `test_suite_config.service_ip`, `test_suite_config.service_port`, `test_suite_config.user_queries` and `test_suite_config.test_output_dir`.
```bash
export USER_QUERIES="[4, 8, 16, 640]"
export DEPLOYMENT_TYPE="k8s"
export SERVICE_IP = None
export SERVICE_PORT = None
export USER_QUERIES="[640, 640, 640, 640]"
export TEST_OUTPUT_DIR="/home/sdp/benchmark_output/node_1"
envsubst < ./benchmark.yaml > GenAIEval/evals/benchmark/benchmark.yaml
```
@@ -237,20 +242,22 @@ kubectl apply -f .
##### 3. Run tests
We copy the configuration file [benchmark.yaml](./benchmark.yaml) to `GenAIEval/evals/benchmark/benchmark.yaml` and config `test_suite_config.user_queries` and `test_suite_config.test_output_dir`.
We copy the configuration file [benchmark.yaml](./benchmark.yaml) to `GenAIEval/evals/benchmark/benchmark.yaml` and config `test_suite_config.deployment_type`, `test_suite_config.service_ip`, `test_suite_config.service_port`, `test_suite_config.user_queries` and `test_suite_config.test_output_dir`.
```bash
export USER_QUERIES="[4, 8, 16, 1280]"
````bash
export DEPLOYMENT_TYPE="k8s"
export SERVICE_IP = None
export SERVICE_PORT = None
export USER_QUERIES="[1280, 1280, 1280, 1280]"
export TEST_OUTPUT_DIR="/home/sdp/benchmark_output/node_2"
envsubst < ./benchmark.yaml > GenAIEval/evals/benchmark/benchmark.yaml
```
And then run the benchmark tool by:
```bash
cd GenAIEval/evals/benchmark
python benchmark.py
```
````
##### 4. Data collection
@@ -286,10 +293,13 @@ kubectl apply -f .
##### 3. Run tests
We copy the configuration file [benchmark.yaml](./benchmark.yaml) to `GenAIEval/evals/benchmark/benchmark.yaml` and config `test_suite_config.user_queries` and `test_suite_config.test_output_dir`.
We copy the configuration file [benchmark.yaml](./benchmark.yaml) to `GenAIEval/evals/benchmark/benchmark.yaml` and config `test_suite_config.deployment_type`, `test_suite_config.service_ip`, `test_suite_config.service_port`, `test_suite_config.user_queries` and `test_suite_config.test_output_dir`.
```bash
export USER_QUERIES="[4, 8, 16, 2560]"
export DEPLOYMENT_TYPE="k8s"
export SERVICE_IP = None
export SERVICE_PORT = None
export USER_QUERIES="[2560, 2560, 2560, 2560]"
export TEST_OUTPUT_DIR="/home/sdp/benchmark_output/node_4"
envsubst < ./benchmark.yaml > GenAIEval/evals/benchmark/benchmark.yaml
```
@@ -313,3 +323,80 @@ cd GenAIExamples/ChatQnA/benchmark/performance/tuned/with_rerank/single_gaudi
kubectl delete -f .
kubectl label nodes k8s-master k8s-worker1 k8s-worker2 k8s-worker3 node-type-
```
## Benchmark with Docker
### Deploy ChatQnA service with Docker
In order to set up the environment correctly, you'll need to configure essential environment variables and, if applicable, proxy-related variables.
```bash
# Example: host_ip="192.168.1.1"
export host_ip="External_Public_IP"
# Example: no_proxy="localhost, 127.0.0.1, 192.168.1.1"
export no_proxy="Your_No_Proxy"
export http_proxy="Your_HTTP_Proxy"
export https_proxy="Your_HTTPs_Proxy"
export HUGGINGFACEHUB_API_TOKEN="Your_Huggingface_API_Token"
```
#### Deploy ChatQnA on Gaudi
```bash
cd GenAIExamples/ChatQnA/docker_compose/intel/hpu/gaudi/
docker compose up -d
```
Refer to the [Gaudi Guide](../../docker_compose/intel/hpu/gaudi/README.md) to build docker images from source.
#### Deploy ChatQnA on Xeon
```bash
cd GenAIExamples/ChatQnA/docker_compose/intel/cpu/xeon/
docker compose up -d
```
Refer to the [Xeon Guide](../../docker_compose/intel/cpu/xeon/README.md) for more instructions on building docker images from source.
#### Deploy ChatQnA on NVIDIA GPU
```bash
cd GenAIExamples/ChatQnA/docker_compose/nvidia/gpu/
docker compose up -d
```
Refer to the [NVIDIA GPU Guide](../../docker_compose/nvidia/gpu/README.md) for more instructions on building docker images from source.
### Run tests
We copy the configuration file [benchmark.yaml](./benchmark.yaml) to `GenAIEval/evals/benchmark/benchmark.yaml` and config `test_suite_config.deployment_type`, `test_suite_config.service_ip`, `test_suite_config.service_port`, `test_suite_config.user_queries` and `test_suite_config.test_output_dir`.
```bash
export DEPLOYMENT_TYPE="docker"
export SERVICE_IP = "ChatQnA Service IP"
export SERVICE_PORT = "ChatQnA Service Port"
export USER_QUERIES="[640, 640, 640, 640]"
export TEST_OUTPUT_DIR="/home/sdp/benchmark_output/docker"
envsubst < ./benchmark.yaml > GenAIEval/evals/benchmark/benchmark.yaml
```
And then run the benchmark tool by:
```bash
cd GenAIEval/evals/benchmark
python benchmark.py
```
### Data collection
All the test results will come to this folder `/home/sdp/benchmark_output/docker` configured by the environment variable `TEST_OUTPUT_DIR` in previous steps.
### Clean up
Take gaudi as example, use the below command to clean up system.
```bash
cd GenAIExamples/docker_compose/intel/hpu/gaudi
docker compose stop && docker compose rm -f
echo y | docker system prune
```

View File

@@ -3,6 +3,9 @@
test_suite_config: # Overall configuration settings for the test suite
examples: ["chatqna"] # The specific test cases being tested, e.g., chatqna, codegen, codetrans, faqgen, audioqna, visualqna
deployment_type: ${DEPLOYMENT_TYPE} # Default is "k8s", can also be "docker"
service_ip: ${SERVICE_IP} # Leave as None for k8s, specify for Docker
service_port: ${SERVICE_PORT} # Leave as None for k8s, specify for Docker
concurrent_level: 5 # The concurrency level, adjustable based on requirements
user_queries: ${USER_QUERIES} # Number of test requests at each concurrency level
random_prompt: false # Use random prompts if true, fixed prompts if false

View File

@@ -0,0 +1,23 @@
# Patterns to ignore when building packages.
# This supports shell glob matching, relative path matching, and
# negation (prefixed with !). Only one pattern per line.
.DS_Store
# Common VCS dirs
.git/
.gitignore
.bzr/
.bzrignore
.hg/
.hgignore
.svn/
# Common backup files
*.swp
*.bak
*.tmp
*.orig
*~
# Various IDEs
.project
.idea/
*.tmproj
.vscode/

View File

@@ -0,0 +1,27 @@
# Copyright (C) 2024 Intel Corporation
# SPDX-License-Identifier: Apache-2.0
apiVersion: v2
name: chatqna-charts
description: A Helm chart for Kubernetes
# A chart can be either an 'application' or a 'library' chart.
#
# Application charts are a collection of templates that can be packaged into versioned archives
# to be deployed.
#
# Library charts provide useful utilities or functions for the chart developer. They're included as
# a dependency of application charts to inject those utilities and functions into the rendering
# pipeline. Library charts do not define any templates and therefore cannot be deployed.
type: application
# This is the chart version. This version number should be incremented each time you make changes
# to the chart and its templates, including the app version.
# Versions are expected to follow Semantic Versioning (https://semver.org/)
version: 1.0
# This is the version number of the application being deployed. This version number should be
# incremented each time you make changes to the application. Versions are not expected to
# follow Semantic Versioning. They should reflect the version the application is using.
# It is recommended to use it with quotes.
appVersion: "1.16.0"

View File

@@ -0,0 +1,38 @@
# ChatQnA Deployment
This document guides you through deploying ChatQnA pipelines using Helm charts. Helm charts simplify managing Kubernetes applications by packaging configuration and resources.
## Getting Started
### Preparation
```bash
# on k8s-master node
cd GenAIExamples/ChatQnA/benchmark/performance/helm_charts
# Replace <your token> with your actual Hugging Face token and run the following command:
HUGGINGFACE_TOKEN=<your token>
find . -name '*.yaml' -type f -exec sed -i "s#\${HF_TOKEN}#${HUGGINGFACE_TOKEN}#g" {} \;
# Replace the following placeholders with the desired model IDs:
LLM_MODEL_ID=Intel/neural-chat-7b-v3-3
EMBEDDING_MODEL_ID=BAAI/bge-base-en-v1.5
RERANK_MODEL_ID=BAAI/bge-reranker-base
find . -name '*.yaml' -type f -exec sed -i "s#\$(LLM_MODEL_ID)#${LLM_MODEL_ID}#g" {} \;
find . -name '*.yaml' -type f -exec sed -i "s#\$(EMBEDDING_MODEL_ID)#${EMBEDDING_MODEL_ID}#g" {} \;
find . -name '*.yaml' -type f -exec sed -i "s#\$(RERANK_MODEL_ID)#${RERANK_MODEL_ID}#g" {} \;
```
### ChatQnA Installation
```bash
# Deploy a ChatQnA pipeline using the specified YAML configuration.
# To deploy with different configurations, simply provide a different YAML file.
helm install chatqna helm_charts/ -f helm_charts/oob_single_node.yaml
# Tips: To display rendered manifests according to the given yaml.
helm template chatqna helm_charts/ -f helm_charts/oob_single_node.yaml
```
Notes: The provided [BKC manifests](https://github.com/opea-project/GenAIExamples/tree/main/ChatQnA/benchmark) for single, two, and four node Kubernetes clusters are generated using this tool.

View File

@@ -0,0 +1,237 @@
# Copyright (C) 2024 Intel Corporation
# SPDX-License-Identifier: Apache-2.0
config:
EMBEDDING_MODEL_ID: BAAI/bge-base-en-v1.5
EMBEDDING_SERVER_HOST_IP: embedding-dependency-svc
HUGGINGFACEHUB_API_TOKEN: ${HF_TOKEN}
INDEX_NAME: rag-redis
LLM_MODEL_ID: Intel/neural-chat-7b-v3-3
LLM_SERVER_HOST_IP: llm-dependency-svc
NODE_SELECTOR: chatqna-opea
REDIS_URL: redis://vector-db.default.svc.cluster.local:6379
RERANK_MODEL_ID: BAAI/bge-reranker-base
RERANK_SERVER_HOST_IP: reranking-dependency-svc
RETRIEVER_SERVICE_HOST_IP: retriever-svc
TEI_EMBEDDING_ENDPOINT: http://embedding-dependency-svc.default.svc.cluster.local:6006
TEI_ENDPOINT: http://embedding-dependency-svc.default.svc.cluster.local:6006
TEI_RERANKING_ENDPOINT: http://reranking-dependency-svc.default.svc.cluster.local:8808
TGI_LLM_ENDPOINT: http://llm-dependency-svc.default.svc.cluster.local:9009
deployments:
- name: chatqna-backend-server-deploy
spec:
image_name: opea/chatqna-no-wrapper
image_tag: latest
replicas: 1
ports:
- containerPort: 8888
- name: dataprep-deploy
spec:
image_name: opea/dataprep-redis
image_tag: latest
replicas: 1
ports:
- containerPort: 6007
- name: vector-db
spec:
image_name: redis/redis-stack
image_tag: 7.2.0-v9
replicas: 1
ports:
- containerPort: 6379
- containerPort: 8001
- name: retriever-deploy
spec:
image_name: opea/retriever-redis
image_tag: latest
replicas: 1
ports:
- containerPort: 7000
- name: embedding-dependency-deploy
spec:
image_name: ghcr.io/huggingface/text-embeddings-inference
image_tag: cpu-1.5
replicas: 1
ports:
- containerPort: 80
args:
- name: "--model-id"
value: $(EMBEDDING_MODEL_ID)
- name: "--auto-truncate"
volumeMounts:
- mountPath: /data
name: model-volume
- mountPath: /dev/shm
name: shm
volumes:
- hostPath:
path: /mnt/models
type: Directory
name: model-volume
- emptyDir:
medium: Memory
sizeLimit: 1Gi
name: shm
- name: reranking-dependency-deploy
spec:
image_name: opea/tei-gaudi
image_tag: latest
replicas: 1
resources:
limits:
habana.ai/gaudi: 1
args:
- name: "--model-id"
- value: $(RERANK_MODEL_ID)
- name: "--auto-truncate"
env:
- name: OMPI_MCA_btl_vader_single_copy_mechanism
value: none
- name: PT_HPU_ENABLE_LAZY_COLLECTIVES
value: "true"
- name: runtime
value: habana
- name: HABANA_VISIBLE_DEVICES
value: all
- name: HF_TOKEN
value: ${HF_TOKEN}
- name: MAX_WARMUP_SEQUENCE_LENGTH
value: "512"
volumeMounts:
- mountPath: /data
name: model-volume
- mountPath: /dev/shm
name: shm
volumes:
- hostPath:
path: /mnt/models
type: Directory
name: model-volume
- emptyDir:
medium: Memory
sizeLimit: 1Gi
name: shm
- name: llm-dependency-deploy
spec:
image_name: ghcr.io/huggingface/tgi-gaudi
image_tag: 2.0.4
replicas: 7
ports:
- containerPort: 80
resources:
limits:
habana.ai/gaudi: 1
args:
- name: "--model-id"
value: $(LLM_MODEL_ID)
- name: "--max-input-length"
value: "2048"
- name: "--max-total-tokens"
value: "4096"
env:
- name: OMPI_MCA_btl_vader_single_copy_mechanism
value: none
- name: PT_HPU_ENABLE_LAZY_COLLECTIVES
value: "true"
- name: runtime
value: habana
- name: HABANA_VISIBLE_DEVICES
value: all
- name: HF_TOKEN
value: ${HF_TOKEN}
volumeMounts:
- mountPath: /data
name: model-volume
- mountPath: /dev/shm
name: shm
volumes:
- hostPath:
path: /mnt/models
type: Directory
name: model-volume
- emptyDir:
medium: Memory
sizeLimit: 1Gi
name: shm
services:
- name: chatqna-backend-server-svc
spec:
ports:
- name: service
nodePort: 30888
port: 8888
targetPort: 8888
selector:
app: chatqna-backend-server-deploy
type: NodePort
- name: dataprep-svc
spec:
ports:
- name: port1
port: 6007
targetPort: 6007
selector:
app: dataprep-deploy
type: ClusterIP
- name: embedding-dependency-svc
spec:
ports:
- name: service
port: 6006
targetPort: 80
selector:
app: embedding-dependency-deploy
type: ClusterIP
- name: llm-dependency-svc
spec:
ports:
- name: service
port: 9009
targetPort: 80
selector:
app: llm-dependency-deploy
type: ClusterIP
- name: reranking-dependency-svc
spec:
ports:
- name: service
port: 8808
targetPort: 80
selector:
app: reranking-dependency-deploy
type: ClusterIP
- name: retriever-svc
spec:
ports:
- name: service
port: 7000
targetPort: 7000
selector:
app: retriever-deploy
type: ClusterIP
- name: vector-db
spec:
ports:
- name: vector-db-service
port: 6379
targetPort: 6379
- name: vector-db-insight
port: 8001
targetPort: 8001
selector:
app: vector-db
type: ClusterIP

View File

@@ -0,0 +1,25 @@
# Copyright (C) 2024 Intel Corporation
# SPDX-License-Identifier: Apache-2.0
apiVersion: v1
kind: ConfigMap
metadata:
name: qna-config
namespace: default
data:
EMBEDDING_MODEL_ID: {{ .Values.config.EMBEDDING_MODEL_ID }}
EMBEDDING_SERVER_HOST_IP: {{ .Values.config.EMBEDDING_SERVER_HOST_IP }}
HUGGINGFACEHUB_API_TOKEN: {{ .Values.config.HUGGINGFACEHUB_API_TOKEN }}
INDEX_NAME: {{ .Values.config.INDEX_NAME }}
LLM_MODEL_ID: {{ .Values.config.LLM_MODEL_ID }}
LLM_SERVER_HOST_IP: {{ .Values.config.LLM_SERVER_HOST_IP }}
NODE_SELECTOR: {{ .Values.config.NODE_SELECTOR }}
REDIS_URL: {{ .Values.config.REDIS_URL }}
RERANK_MODEL_ID: {{ .Values.config.RERANK_MODEL_ID }}
RERANK_SERVER_HOST_IP: {{ .Values.config.RERANK_SERVER_HOST_IP }}
RETRIEVER_SERVICE_HOST_IP: {{ .Values.config.RETRIEVER_SERVICE_HOST_IP }}
TEI_EMBEDDING_ENDPOINT: {{ .Values.config.TEI_EMBEDDING_ENDPOINT }}
TEI_ENDPOINT: {{ .Values.config.TEI_ENDPOINT }}
TEI_RERANKING_ENDPOINT: {{ .Values.config.TEI_RERANKING_ENDPOINT }}
TGI_LLM_ENDPOINT: {{ .Values.config.TGI_LLM_ENDPOINT }}
---

View File

@@ -0,0 +1,108 @@
# Copyright (C) 2024 Intel Corporation
# SPDX-License-Identifier: Apache-2.0
{{- range $deployment := .Values.deployments }}
apiVersion: apps/v1
kind: Deployment
metadata:
name: {{ $deployment.name }}
namespace: default
spec:
replicas: {{ $deployment.spec.replicas }}
selector:
matchLabels:
app: {{ $deployment.name }}
template:
metadata:
annotations:
sidecar.istio.io/rewriteAppHTTPProbers: 'true'
labels:
app: {{ $deployment.name }}
spec:
containers:
- envFrom:
- configMapRef:
name: qna-config
{{- if $deployment.spec.args }}
args:
{{- range $arg := $deployment.spec.args }}
{{- if $arg.name }}
- {{ $arg.name }}
{{- end }}
{{- if $arg.value }}
- "{{ $arg.value }}"
{{- end }}
{{- end }}
{{- end }}
{{- if $deployment.spec.env }}
env:
{{- range $env := $deployment.spec.env }}
- name: {{ $env.name }}
value: "{{ $env.value }}"
{{- end }}
{{- end }}
image: {{ $deployment.spec.image_name }}:{{ $deployment.spec.image_tag }}
imagePullPolicy: IfNotPresent
name: {{ $deployment.name }}
{{- if $deployment.spec.ports }}
ports:
{{- range $port := $deployment.spec.ports }}
{{- range $port_name, $port_id := $port }}
- {{ $port_name }}: {{ $port_id }}
{{- end }}
{{- end }}
{{- end }}
{{- if $deployment.spec.resources }}
resources:
{{- range $resourceType, $resource := $deployment.spec.resources }}
{{ $resourceType }}:
{{- range $limitType, $limit := $resource }}
{{ $limitType }}: {{ $limit }}
{{- end }}
{{- end }}
{{- end }}
{{- if $deployment.spec.volumeMounts }}
volumeMounts:
{{- range $volumeMount := $deployment.spec.volumeMounts }}
- mountPath: {{ $volumeMount.mountPath }}
name: {{ $volumeMount.name }}
{{- end }}
{{- end }}
hostIPC: true
nodeSelector:
node-type: chatqna-opea
serviceAccountName: default
topologySpreadConstraints:
- labelSelector:
matchLabels:
app: {{ $deployment.name }}
maxSkew: 1
topologyKey: kubernetes.io/hostname
whenUnsatisfiable: ScheduleAnyway
{{- if $deployment.spec.volumes }}
volumes:
{{- range $index, $volume := $deployment.spec.volumes }}
- name: {{ $volume.name }}
{{- if $volume.hostPath }}
hostPath:
path: {{ $volume.hostPath.path }}
type: {{ $volume.hostPath.type }}
{{- else if $volume.emptyDir }}
emptyDir:
medium: {{ $volume.emptyDir.medium }}
sizeLimit: {{ $volume.emptyDir.sizeLimit }}
{{- end }}
{{- end }}
{{- end }}
---
{{- end }}

View File

@@ -0,0 +1,24 @@
# Copyright (C) 2024 Intel Corporation
# SPDX-License-Identifier: Apache-2.0
{{- range $service := .Values.services }}
apiVersion: v1
kind: Service
metadata:
name: {{ $service.name }}
namespace: default
spec:
ports:
{{- range $port := $service.spec.ports }}
- name: {{ $port.name }}
{{- range $port_name, $port_id := $port }}
{{- if ne $port_name "name"}}
{{ $port_name }}: {{ $port_id }}
{{- end }}
{{- end }}
{{- end }}
selector:
app: {{ $service.spec.selector.app }}
type: {{ $service.spec.type }}
---
{{- end }}

View File

@@ -0,0 +1,259 @@
# Copyright (C) 2024 Intel Corporation
# SPDX-License-Identifier: Apache-2.0
config:
EMBEDDING_MODEL_ID: BAAI/bge-base-en-v1.5
EMBEDDING_SERVER_HOST_IP: embedding-dependency-svc
HUGGINGFACEHUB_API_TOKEN: ${HF_TOKEN}
INDEX_NAME: rag-redis
LLM_MODEL_ID: Intel/neural-chat-7b-v3-3
LLM_SERVER_HOST_IP: llm-dependency-svc
NODE_SELECTOR: chatqna-opea
REDIS_URL: redis://vector-db.default.svc.cluster.local:6379
RERANK_MODEL_ID: BAAI/bge-reranker-base
RERANK_SERVER_HOST_IP: reranking-dependency-svc
RETRIEVER_SERVICE_HOST_IP: retriever-svc
TEI_EMBEDDING_ENDPOINT: http://embedding-dependency-svc.default.svc.cluster.local:6006
TEI_ENDPOINT: http://embedding-dependency-svc.default.svc.cluster.local:6006
TEI_RERANKING_ENDPOINT: http://reranking-dependency-svc.default.svc.cluster.local:8808
TGI_LLM_ENDPOINT: http://llm-dependency-svc.default.svc.cluster.local:9009
deployments:
- name: chatqna-backend-server-deploy
spec:
image_name: opea/chatqna-no-wrapper
image_tag: latest
replicas: 2
ports:
- containerPort: 8888
resources:
limits:
cpu: "8"
memory: "8000Mi"
requests:
cpu: "8"
memory: "8000Mi"
- name: dataprep-deploy
spec:
image_name: opea/dataprep-redis
image_tag: latest
replicas: 1
ports:
- containerPort: 6007
- name: vector-db
spec:
image_name: redis/redis-stack
image_tag: 7.2.0-v9
replicas: 1
ports:
- containerPort: 6379
- containerPort: 8001
- name: retriever-deploy
spec:
image_name: opea/retriever-redis
image_tag: latest
replicas: 2
ports:
- containerPort: 7000
resources:
requests:
cpu: "4"
memory: "4000Mi"
- name: embedding-dependency-deploy
spec:
image_name: ghcr.io/huggingface/text-embeddings-inference
image_tag: cpu-1.5
replicas: 1
ports:
- containerPort: 80
args:
- name: "--model-id"
value: $(EMBEDDING_MODEL_ID)
- name: "--auto-truncate"
resources:
limits:
cpu: "80"
memory: "20000Mi"
requests:
cpu: "80"
memory: "20000Mi"
volumeMounts:
- mountPath: /data
name: model-volume
- mountPath: /dev/shm
name: shm
volumes:
- hostPath:
path: /mnt/models
type: Directory
name: model-volume
- emptyDir:
medium: Memory
sizeLimit: 1Gi
name: shm
- name: reranking-dependency-deploy
spec:
image_name: opea/tei-gaudi
image_tag: latest
replicas: 1
resources:
limits:
habana.ai/gaudi: 1
args:
- name: "--model-id"
- value: $(RERANK_MODEL_ID)
- name: "--auto-truncate"
env:
- name: OMPI_MCA_btl_vader_single_copy_mechanism
value: none
- name: PT_HPU_ENABLE_LAZY_COLLECTIVES
value: "true"
- name: runtime
value: habana
- name: HABANA_VISIBLE_DEVICES
value: all
- name: HF_TOKEN
value: ${HF_TOKEN}
- name: MAX_WARMUP_SEQUENCE_LENGTH
value: "512"
volumeMounts:
- mountPath: /data
name: model-volume
- mountPath: /dev/shm
name: shm
volumes:
- hostPath:
path: /mnt/models
type: Directory
name: model-volume
- emptyDir:
medium: Memory
sizeLimit: 1Gi
name: shm
- name: llm-dependency-deploy
spec:
image_name: ghcr.io/huggingface/tgi-gaudi
image_tag: 2.0.4
replicas: 7
ports:
- containerPort: 80
resources:
limits:
habana.ai/gaudi: 1
args:
- name: "--model-id"
value: $(LLM_MODEL_ID)
- name: "--max-input-length"
value: "1280"
- name: "--max-total-tokens"
value: "2048"
- name: "--max-batch-total-tokens"
value: "65536"
- name: "--max-batch-prefill-tokens"
value: "4096"
env:
- name: OMPI_MCA_btl_vader_single_copy_mechanism
value: none
- name: PT_HPU_ENABLE_LAZY_COLLECTIVES
value: "true"
- name: runtime
value: habana
- name: HABANA_VISIBLE_DEVICES
value: all
- name: HF_TOKEN
value: ${HF_TOKEN}
volumeMounts:
- mountPath: /data
name: model-volume
- mountPath: /dev/shm
name: shm
volumes:
- hostPath:
path: /mnt/models
type: Directory
name: model-volume
- emptyDir:
medium: Memory
sizeLimit: 1Gi
name: shm
services:
- name: chatqna-backend-server-svc
spec:
ports:
- name: service
nodePort: 30888
port: 8888
targetPort: 8888
selector:
app: chatqna-backend-server-deploy
type: NodePort
- name: dataprep-svc
spec:
ports:
- name: port1
port: 6007
targetPort: 6007
selector:
app: dataprep-deploy
type: ClusterIP
- name: embedding-dependency-svc
spec:
ports:
- name: service
port: 6006
targetPort: 80
selector:
app: embedding-dependency-deploy
type: ClusterIP
- name: llm-dependency-svc
spec:
ports:
- name: service
port: 9009
targetPort: 80
selector:
app: llm-dependency-deploy
type: ClusterIP
- name: reranking-dependency-svc
spec:
ports:
- name: service
port: 8808
targetPort: 80
selector:
app: reranking-dependency-deploy
type: ClusterIP
- name: retriever-svc
spec:
ports:
- name: service
port: 7000
targetPort: 7000
selector:
app: retriever-deploy
type: ClusterIP
- name: vector-db
spec:
ports:
- name: vector-db-service
port: 6379
targetPort: 6379
- name: vector-db-insight
port: 8001
targetPort: 8001
selector:
app: vector-db
type: ClusterIP

View File

@@ -0,0 +1,237 @@
# Copyright (C) 2024 Intel Corporation
# SPDX-License-Identifier: Apache-2.0
config:
EMBEDDING_MODEL_ID: BAAI/bge-base-en-v1.5
EMBEDDING_SERVER_HOST_IP: embedding-dependency-svc
HUGGINGFACEHUB_API_TOKEN: ${HF_TOKEN}
INDEX_NAME: rag-redis
LLM_MODEL_ID: Intel/neural-chat-7b-v3-3
LLM_SERVER_HOST_IP: llm-dependency-svc
NODE_SELECTOR: chatqna-opea
REDIS_URL: redis://vector-db.default.svc.cluster.local:6379
RERANK_MODEL_ID: BAAI/bge-reranker-base
RERANK_SERVER_HOST_IP: reranking-dependency-svc
RETRIEVER_SERVICE_HOST_IP: retriever-svc
TEI_EMBEDDING_ENDPOINT: http://embedding-dependency-svc.default.svc.cluster.local:6006
TEI_ENDPOINT: http://embedding-dependency-svc.default.svc.cluster.local:6006
TEI_RERANKING_ENDPOINT: http://reranking-dependency-svc.default.svc.cluster.local:8808
TGI_LLM_ENDPOINT: http://llm-dependency-svc.default.svc.cluster.local:9009
deployments:
- name: chatqna-backend-server-deploy
spec:
image_name: opea/chatqna-no-wrapper
image_tag: latest
replicas: 1
ports:
- containerPort: 8888
- name: dataprep-deploy
spec:
image_name: opea/dataprep-redis
image_tag: latest
replicas: 1
ports:
- containerPort: 6007
- name: vector-db
spec:
image_name: redis/redis-stack
image_tag: 7.2.0-v9
replicas: 1
ports:
- containerPort: 6379
- containerPort: 8001
- name: retriever-deploy
spec:
image_name: opea/retriever-redis
image_tag: latest
replicas: 1
ports:
- containerPort: 7000
- name: embedding-dependency-deploy
spec:
image_name: ghcr.io/huggingface/text-embeddings-inference
image_tag: cpu-1.5
replicas: 1
ports:
- containerPort: 80
args:
- name: "--model-id"
value: $(EMBEDDING_MODEL_ID)
- name: "--auto-truncate"
volumeMounts:
- mountPath: /data
name: model-volume
- mountPath: /dev/shm
name: shm
volumes:
- hostPath:
path: /mnt/models
type: Directory
name: model-volume
- emptyDir:
medium: Memory
sizeLimit: 1Gi
name: shm
- name: reranking-dependency-deploy
spec:
image_name: opea/tei-gaudi
image_tag: latest
replicas: 1
resources:
limits:
habana.ai/gaudi: 1
args:
- name: "--model-id"
- value: $(RERANK_MODEL_ID)
- name: "--auto-truncate"
env:
- name: OMPI_MCA_btl_vader_single_copy_mechanism
value: none
- name: PT_HPU_ENABLE_LAZY_COLLECTIVES
value: "true"
- name: runtime
value: habana
- name: HABANA_VISIBLE_DEVICES
value: all
- name: HF_TOKEN
value: ${HF_TOKEN}
- name: MAX_WARMUP_SEQUENCE_LENGTH
value: "512"
volumeMounts:
- mountPath: /data
name: model-volume
- mountPath: /dev/shm
name: shm
volumes:
- hostPath:
path: /mnt/models
type: Directory
name: model-volume
- emptyDir:
medium: Memory
sizeLimit: 1Gi
name: shm
- name: llm-dependency-deploy
spec:
image_name: ghcr.io/huggingface/tgi-gaudi
image_tag: 2.0.4
replicas: 7
ports:
- containerPort: 80
resources:
limits:
habana.ai/gaudi: 1
args:
- name: "--model-id"
value: $(LLM_MODEL_ID)
- name: "--max-input-length"
value: "2048"
- name: "--max-total-tokens"
value: "4096"
env:
- name: OMPI_MCA_btl_vader_single_copy_mechanism
value: none
- name: PT_HPU_ENABLE_LAZY_COLLECTIVES
value: "true"
- name: runtime
value: habana
- name: HABANA_VISIBLE_DEVICES
value: all
- name: HF_TOKEN
value: ${HF_TOKEN}
volumeMounts:
- mountPath: /data
name: model-volume
- mountPath: /dev/shm
name: shm
volumes:
- hostPath:
path: /mnt/models
type: Directory
name: model-volume
- emptyDir:
medium: Memory
sizeLimit: 1Gi
name: shm
services:
- name: chatqna-backend-server-svc
spec:
ports:
- name: service
nodePort: 30888
port: 8888
targetPort: 8888
selector:
app: chatqna-backend-server-deploy
type: NodePort
- name: dataprep-svc
spec:
ports:
- name: port1
port: 6007
targetPort: 6007
selector:
app: dataprep-deploy
type: ClusterIP
- name: embedding-dependency-svc
spec:
ports:
- name: service
port: 6006
targetPort: 80
selector:
app: embedding-dependency-deploy
type: ClusterIP
- name: llm-dependency-svc
spec:
ports:
- name: service
port: 9009
targetPort: 80
selector:
app: llm-dependency-deploy
type: ClusterIP
- name: reranking-dependency-svc
spec:
ports:
- name: service
port: 8808
targetPort: 80
selector:
app: reranking-dependency-deploy
type: ClusterIP
- name: retriever-svc
spec:
ports:
- name: service
port: 7000
targetPort: 7000
selector:
app: retriever-deploy
type: ClusterIP
- name: vector-db
spec:
ports:
- name: vector-db-service
port: 6379
targetPort: 6379
- name: vector-db-insight
port: 8001
targetPort: 8001
selector:
app: vector-db
type: ClusterIP

View File

@@ -237,7 +237,7 @@ spec:
envFrom:
- configMapRef:
name: qna-config
image: ghcr.io/huggingface/tgi-gaudi:2.0.4
image: ghcr.io/huggingface/tgi-gaudi:2.0.5
imagePullPolicy: IfNotPresent
name: llm-dependency-deploy
ports:

View File

@@ -237,7 +237,7 @@ spec:
envFrom:
- configMapRef:
name: qna-config
image: ghcr.io/huggingface/tgi-gaudi:2.0.4
image: ghcr.io/huggingface/tgi-gaudi:2.0.5
imagePullPolicy: IfNotPresent
name: llm-dependency-deploy
ports:

View File

@@ -237,7 +237,7 @@ spec:
envFrom:
- configMapRef:
name: qna-config
image: ghcr.io/huggingface/tgi-gaudi:2.0.4
image: ghcr.io/huggingface/tgi-gaudi:2.0.5
imagePullPolicy: IfNotPresent
name: llm-dependency-deploy
ports:

View File

@@ -237,7 +237,7 @@ spec:
envFrom:
- configMapRef:
name: qna-config
image: ghcr.io/huggingface/tgi-gaudi:2.0.4
image: ghcr.io/huggingface/tgi-gaudi:2.0.5
imagePullPolicy: IfNotPresent
name: llm-dependency-deploy
ports:

View File

@@ -237,7 +237,7 @@ spec:
envFrom:
- configMapRef:
name: qna-config
image: ghcr.io/huggingface/tgi-gaudi:2.0.4
image: ghcr.io/huggingface/tgi-gaudi:2.0.5
imagePullPolicy: IfNotPresent
name: llm-dependency-deploy
ports:

View File

@@ -237,7 +237,7 @@ spec:
envFrom:
- configMapRef:
name: qna-config
image: ghcr.io/huggingface/tgi-gaudi:2.0.4
image: ghcr.io/huggingface/tgi-gaudi:2.0.5
imagePullPolicy: IfNotPresent
name: llm-dependency-deploy
ports:

View File

@@ -237,7 +237,7 @@ spec:
envFrom:
- configMapRef:
name: qna-config
image: ghcr.io/huggingface/tgi-gaudi:2.0.4
image: ghcr.io/huggingface/tgi-gaudi:2.0.5
imagePullPolicy: IfNotPresent
name: llm-dependency-deploy
ports:

View File

@@ -237,7 +237,7 @@ spec:
envFrom:
- configMapRef:
name: qna-config
image: ghcr.io/huggingface/tgi-gaudi:2.0.4
image: ghcr.io/huggingface/tgi-gaudi:2.0.5
imagePullPolicy: IfNotPresent
name: llm-dependency-deploy
ports:

View File

@@ -167,10 +167,10 @@ spec:
- containerPort: 80
resources:
limits:
cpu: 76
cpu: 80
memory: 20000Mi
requests:
cpu: 76
cpu: 80
memory: 20000Mi
volumeMounts:
- mountPath: /data
@@ -255,7 +255,7 @@ spec:
envFrom:
- configMapRef:
name: qna-config
image: ghcr.io/huggingface/tgi-gaudi:2.0.4
image: ghcr.io/huggingface/tgi-gaudi:2.0.5
imagePullPolicy: IfNotPresent
name: llm-dependency-deploy
ports:

View File

@@ -167,10 +167,10 @@ spec:
- containerPort: 80
resources:
limits:
cpu: 76
cpu: 80
memory: 20000Mi
requests:
cpu: 76
cpu: 80
memory: 20000Mi
volumeMounts:
- mountPath: /data
@@ -255,7 +255,7 @@ spec:
envFrom:
- configMapRef:
name: qna-config
image: ghcr.io/huggingface/tgi-gaudi:2.0.4
image: ghcr.io/huggingface/tgi-gaudi:2.0.5
imagePullPolicy: IfNotPresent
name: llm-dependency-deploy
ports:

View File

@@ -167,10 +167,10 @@ spec:
- containerPort: 80
resources:
limits:
cpu: 76
cpu: 80
memory: 20000Mi
requests:
cpu: 76
cpu: 80
memory: 20000Mi
volumeMounts:
- mountPath: /data
@@ -255,7 +255,7 @@ spec:
envFrom:
- configMapRef:
name: qna-config
image: ghcr.io/huggingface/tgi-gaudi:2.0.4
image: ghcr.io/huggingface/tgi-gaudi:2.0.5
imagePullPolicy: IfNotPresent
name: llm-dependency-deploy
ports:

View File

@@ -167,10 +167,10 @@ spec:
- containerPort: 80
resources:
limits:
cpu: 76
cpu: 80
memory: 20000Mi
requests:
cpu: 76
cpu: 80
memory: 20000Mi
volumeMounts:
- mountPath: /data
@@ -255,7 +255,7 @@ spec:
envFrom:
- configMapRef:
name: qna-config
image: ghcr.io/huggingface/tgi-gaudi:2.0.4
image: ghcr.io/huggingface/tgi-gaudi:2.0.5
imagePullPolicy: IfNotPresent
name: llm-dependency-deploy
ports:

View File

@@ -167,10 +167,10 @@ spec:
- containerPort: 80
resources:
limits:
cpu: 76
cpu: 80
memory: 20000Mi
requests:
cpu: 76
cpu: 80
memory: 20000Mi
volumeMounts:
- mountPath: /data
@@ -255,7 +255,7 @@ spec:
envFrom:
- configMapRef:
name: qna-config
image: ghcr.io/huggingface/tgi-gaudi:2.0.4
image: ghcr.io/huggingface/tgi-gaudi:2.0.5
imagePullPolicy: IfNotPresent
name: llm-dependency-deploy
ports:

View File

@@ -167,10 +167,10 @@ spec:
- containerPort: 80
resources:
limits:
cpu: 76
cpu: 80
memory: 20000Mi
requests:
cpu: 76
cpu: 80
memory: 20000Mi
volumeMounts:
- mountPath: /data
@@ -255,7 +255,7 @@ spec:
envFrom:
- configMapRef:
name: qna-config
image: ghcr.io/huggingface/tgi-gaudi:2.0.4
image: ghcr.io/huggingface/tgi-gaudi:2.0.5
imagePullPolicy: IfNotPresent
name: llm-dependency-deploy
ports:

View File

@@ -167,10 +167,10 @@ spec:
- containerPort: 80
resources:
limits:
cpu: 76
cpu: 80
memory: 20000Mi
requests:
cpu: 76
cpu: 80
memory: 20000Mi
volumeMounts:
- mountPath: /data
@@ -255,7 +255,7 @@ spec:
envFrom:
- configMapRef:
name: qna-config
image: ghcr.io/huggingface/tgi-gaudi:2.0.4
image: ghcr.io/huggingface/tgi-gaudi:2.0.5
imagePullPolicy: IfNotPresent
name: llm-dependency-deploy
ports:

View File

@@ -167,10 +167,10 @@ spec:
- containerPort: 80
resources:
limits:
cpu: 76
cpu: 80
memory: 20000Mi
requests:
cpu: 76
cpu: 80
memory: 20000Mi
volumeMounts:
- mountPath: /data
@@ -255,7 +255,7 @@ spec:
envFrom:
- configMapRef:
name: qna-config
image: ghcr.io/huggingface/tgi-gaudi:2.0.4
image: ghcr.io/huggingface/tgi-gaudi:2.0.5
imagePullPolicy: IfNotPresent
name: llm-dependency-deploy
ports:

View File

@@ -19,7 +19,7 @@ opea_micro_services:
tei-embedding-service:
host: ${TEI_EMBEDDING_SERVICE_IP}
ports: ${TEI_EMBEDDING_SERVICE_PORT}
image: opea/tei-gaudi:latest
image: ghcr.io/huggingface/tei-gaudi:latest
volumes:
- "./data:/data"
runtime: habana
@@ -48,7 +48,7 @@ opea_micro_services:
tgi-service:
host: ${TGI_SERVICE_IP}
ports: ${TGI_SERVICE_PORT}
image: ghcr.io/huggingface/tgi-gaudi:2.0.1
image: ghcr.io/huggingface/tgi-gaudi:2.0.5
volumes:
- "./data:/data"
runtime: habana
@@ -56,10 +56,13 @@ opea_micro_services:
- SYS_NICE
ipc: host
environment:
HUGGINGFACEHUB_API_TOKEN: ${HUGGINGFACEHUB_API_TOKEN}
HUGGING_FACE_HUB_TOKEN: ${HUGGINGFACEHUB_API_TOKEN}
HABANA_VISIBLE_DEVICES: all
OMPI_MCA_btl_vader_single_copy_mechanism: none
HF_TOKEN: ${HUGGINGFACEHUB_API_TOKEN}
ENABLE_HPU_GRAPH: true
LIMIT_HPU_GRAPH: true
USE_FLASH_ATTENTION: true
FLASH_ATTENTION_RECOMPUTE: true
model-id: ${LLM_MODEL_ID}
llm:
host: ${LLM_SERVICE_HOST_IP}

View File

@@ -0,0 +1,35 @@
#!/bin/bash
# Copyright (C) 2024 Intel Corporation
# SPDX-License-Identifier: Apache-2.0
# Update the package index
sudo apt-get -y update
# Install prerequisites
sudo apt-get -y install ca-certificates curl
# Create the directory for the Docker GPG key
sudo install -m 0755 -d /etc/apt/keyrings
# Add Docker's official GPG key
sudo curl -fsSL https://download.docker.com/linux/ubuntu/gpg -o /etc/apt/keyrings/docker.asc
# Set permissions for the GPG key
sudo chmod a+r /etc/apt/keyrings/docker.asc
# Add Docker repository to the sources list
echo "deb [arch=$(dpkg --print-architecture) signed-by=/etc/apt/keyrings/docker.asc] https://download.docker.com/linux/ubuntu \
$(. /etc/os-release && echo "$VERSION_CODENAME") stable" | sudo tee /etc/apt/sources.list.d/docker.list > /dev/null
# Update the package index with Docker packages
sudo apt-get -y update
# Install Docker packages
sudo apt-get -y install docker-ce docker-ce-cli containerd.io docker-buildx-plugin docker-compose-plugin
# add existing user
sudo usermod -aG docker $USER
# Optional: Verify that Docker is installed correctly
sudo docker --version

View File

@@ -11,36 +11,84 @@ git clone https://github.com/opea-project/GenAIComps.git
cd GenAIComps
```
If you are in a proxy environment, set the proxy-related environment variables:
export http_proxy="Your_HTTP_Proxy"
export https_proxy="Your_HTTPs_Proxy"
### 1. Build Embedding Image
```bash
docker build --no-cache -t opea/embedding-tei:latest -f comps/embeddings/tei/langchain/Dockerfile .
docker build --no-cache -t opea/embedding-tei:latest --build-arg https_proxy=$https_proxy --build-arg http_proxy=$http_proxy -f comps/embeddings/tei/langchain/Dockerfile .
```
### 2. Build Retriever Image
```bash
docker build --no-cache -t opea/retriever-redis:latest -f comps/retrievers/redis/langchain/Dockerfile .
docker build --no-cache -t opea/retriever-redis:latest --build-arg https_proxy=$https_proxy --build-arg http_proxy=$http_proxy -f comps/retrievers/redis/langchain/Dockerfile .
```
### 3. Build Rerank Image
```bash
docker build --no-cache -t opea/reranking-tei:latest -f comps/reranks/tei/Dockerfile .
docker build --no-cache -t opea/reranking-tei:latest --build-arg https_proxy=$https_proxy --build-arg http_proxy=$http_proxy -f comps/reranks/tei/Dockerfile .
```
### 4. Build LLM Image
### 4. Set up Ollama Service and Build LLM Image
We use [Ollama](https://ollama.com/) as our LLM service for AIPC. Please pre-download Ollama on your PC.
We use [Ollama](https://ollama.com/) as our LLM service for AIPC.
Please set up Ollama on your PC follow the instructions. This will set the entrypoint needed for the Ollama to suit the ChatQnA examples.
#### 4.1 Set Up Ollama LLM Service
Install Ollama service with one command
curl -fsSL https://ollama.com/install.sh | sh
##### Set Ollama Service Configuration
Ollama Service Configuration file is /etc/systemd/system/ollama.service. Edit the file to set OLLAMA_HOST environment (Replace **${host_ip}** with your host IPV4).
```
Environment="OLLAMA_HOST=${host_ip}:11434"
```
##### Set https_proxy environment for Ollama
if your system access network through proxy, add https_proxy in Ollama Service Configuration file
```
Environment="https_proxy="Your_HTTPS_Proxy"
```
##### Restart Ollam services
```
$ sudo systemctl daemon-reload
$ sudo systemctl restart ollama.service
```
##### Pull LLM model
```
#export OLLAMA_HOST=http://${host_ip}:11434
#ollama pull llam3
#ollama lists
NAME ID SIZE MODIFIED
llama3:latest 365c0bd3c000 4.7 GB 5 days ago
```
#### 4.2 Build LLM Image
```bash
docker build --no-cache -t opea/llm-ollama:latest -f comps/llms/text-generation/ollama/langchain/Dockerfile .
docker build --no-cache -t opea/llm-ollama:latest --build-arg https_proxy=$https_proxy --build-arg http_proxy=$http_proxy -f comps/llms/text-generation/ollama/langchain/Dockerfile .
```
### 5. Build Dataprep Image
```bash
docker build --no-cache -t opea/dataprep-redis:latest -f comps/dataprep/redis/langchain/Dockerfile .
docker build --no-cache -t opea/dataprep-redis:latest --build-arg https_proxy=$https_proxy --build-arg http_proxy=$http_proxy -f comps/dataprep/redis/langchain/Dockerfile .
cd ..
```
@@ -61,7 +109,7 @@ Build frontend Docker image via below command:
```bash
cd GenAIExamples/ChatQnA/ui
docker build --no-cache -t opea/chatqna-ui:latest -f ./docker/Dockerfile .
docker build --no-cache -t opea/chatqna-ui:latest --build-arg https_proxy=$https_proxy --build-arg http_proxy=$http_proxy -f ./docker/Dockerfile .
cd ../../../..
```

View File

@@ -51,7 +51,7 @@ In following cases, you could build docker image from source by yourself.
- Failed to download the docker image.
- Use the latest or special version.
- If you want to use a specific version of Docker image.
Please refer to 'Build Docker Images' in below.
@@ -233,7 +233,7 @@ For users in China who are unable to download models directly from Huggingface,
export HF_TOKEN=${your_hf_token}
export HF_ENDPOINT="https://hf-mirror.com"
model_name="Intel/neural-chat-7b-v3-3"
docker run -p 8008:80 -v ./data:/data --name tgi-service -e HF_ENDPOINT=$HF_ENDPOINT -e http_proxy=$http_proxy -e https_proxy=$https_proxy --shm-size 1g ghcr.io/huggingface/text-generation-inference:2.2.0 --model-id $model_name
docker run -p 8008:80 -v ./data:/data --name tgi-service -e HF_ENDPOINT=$HF_ENDPOINT -e http_proxy=$http_proxy -e https_proxy=$https_proxy --shm-size 1g ghcr.io/huggingface/text-generation-inference:sha-e4201f4-intel-cpu --model-id $model_name
```
2. Offline
@@ -247,7 +247,7 @@ For users in China who are unable to download models directly from Huggingface,
```bash
export HF_TOKEN=${your_hf_token}
export model_path="/path/to/model"
docker run -p 8008:80 -v $model_path:/data --name tgi_service --shm-size 1g ghcr.io/huggingface/text-generation-inference:2.2.0 --model-id /data
docker run -p 8008:80 -v $model_path:/data --name tgi_service --shm-size 1g ghcr.io/huggingface/text-generation-inference:sha-e4201f4-intel-cpu --model-id /data
```
### Setup Environment Variables

View File

@@ -69,7 +69,7 @@ services:
INDEX_NAME: ${INDEX_NAME}
restart: unless-stopped
tei-reranking-service:
image: ghcr.io/huggingface/text-embeddings-inference:cpu-1.2
image: ghcr.io/huggingface/text-embeddings-inference:cpu-1.5
container_name: tei-reranking-server
ports:
- "6041:80"

View File

@@ -25,7 +25,7 @@ services:
TEI_ENDPOINT: ${TEI_EMBEDDING_ENDPOINT}
HUGGINGFACEHUB_API_TOKEN: ${HUGGINGFACEHUB_API_TOKEN}
tei-embedding-service:
image: ghcr.io/huggingface/text-embeddings-inference:cpu-1.2
image: ghcr.io/huggingface/text-embeddings-inference:cpu-1.5
container_name: tei-embedding-server
ports:
- "6006:80"
@@ -75,7 +75,7 @@ services:
HUGGINGFACEHUB_API_TOKEN: ${HUGGINGFACEHUB_API_TOKEN}
restart: unless-stopped
tei-reranking-service:
image: ghcr.io/huggingface/text-embeddings-inference:cpu-1.2
image: ghcr.io/huggingface/text-embeddings-inference:cpu-1.5
container_name: tei-reranking-server
ports:
- "8808:80"

View File

@@ -10,6 +10,7 @@ export LLM_MODEL_ID="Intel/neural-chat-7b-v3-3"
export TEI_EMBEDDING_ENDPOINT="http://${host_ip}:6006"
export TEI_RERANKING_ENDPOINT="http://${host_ip}:8808"
export TGI_LLM_ENDPOINT="http://${host_ip}:9009"
export vLLM_LLM_ENDPOINT="http://${host_ip}:9009"
export REDIS_URL="redis://${host_ip}:6379"
export INDEX_NAME="rag-redis"
export REDIS_HOST=${host_ip}

View File

@@ -52,7 +52,7 @@ In following cases, you could build docker image from source by yourself.
- Failed to download the docker image.
- Use the latest or special version.
- If you want to use a specific version of Docker image.
Please refer to 'Build Docker Images' in below.

View File

@@ -25,7 +25,7 @@ services:
TEI_ENDPOINT: ${TEI_EMBEDDING_ENDPOINT}
HUGGINGFACEHUB_API_TOKEN: ${HUGGINGFACEHUB_API_TOKEN}
tei-embedding-service:
image: ${REGISTRY:-opea}/tei-gaudi:${TAG:-latest}
image: ghcr.io/huggingface/tei-gaudi:latest
container_name: tei-embedding-gaudi-server
ports:
- "8090:80"
@@ -108,7 +108,7 @@ services:
HF_HUB_ENABLE_HF_TRANSFER: 0
restart: unless-stopped
tgi-service:
image: ghcr.io/huggingface/tgi-gaudi:2.0.1
image: ghcr.io/huggingface/tgi-gaudi:2.0.5
container_name: tgi-gaudi-server
ports:
- "8005:80"
@@ -118,11 +118,15 @@ services:
no_proxy: ${no_proxy}
http_proxy: ${http_proxy}
https_proxy: ${https_proxy}
HF_TOKEN: ${HUGGINGFACEHUB_API_TOKEN}
HUGGING_FACE_HUB_TOKEN: ${HUGGINGFACEHUB_API_TOKEN}
HF_HUB_DISABLE_PROGRESS_BARS: 1
HF_HUB_ENABLE_HF_TRANSFER: 0
HABANA_VISIBLE_DEVICES: ${llm_service_devices}
OMPI_MCA_btl_vader_single_copy_mechanism: none
ENABLE_HPU_GRAPH: true
LIMIT_HPU_GRAPH: true
USE_FLASH_ATTENTION: true
FLASH_ATTENTION_RECOMPUTE: true
runtime: habana
cap_add:
- SYS_NICE

View File

@@ -25,7 +25,7 @@ services:
TEI_ENDPOINT: ${TEI_EMBEDDING_ENDPOINT}
HUGGINGFACEHUB_API_TOKEN: ${HUGGINGFACEHUB_API_TOKEN}
tgi-guardrails-service:
image: ghcr.io/huggingface/tgi-gaudi:2.0.1
image: ghcr.io/huggingface/tgi-gaudi:2.0.5
container_name: tgi-guardrails-server
ports:
- "8088:80"
@@ -35,11 +35,15 @@ services:
no_proxy: ${no_proxy}
http_proxy: ${http_proxy}
https_proxy: ${https_proxy}
HF_TOKEN: ${HUGGINGFACEHUB_API_TOKEN}
HUGGING_FACE_HUB_TOKEN: ${HUGGINGFACEHUB_API_TOKEN}
HF_HUB_DISABLE_PROGRESS_BARS: 1
HF_HUB_ENABLE_HF_TRANSFER: 0
HABANA_VISIBLE_DEVICES: all
OMPI_MCA_btl_vader_single_copy_mechanism: none
ENABLE_HPU_GRAPH: true
LIMIT_HPU_GRAPH: true
USE_FLASH_ATTENTION: true
FLASH_ATTENTION_RECOMPUTE: true
runtime: habana
cap_add:
- SYS_NICE
@@ -60,7 +64,7 @@ services:
HUGGINGFACEHUB_API_TOKEN: ${HUGGINGFACEHUB_API_TOKEN}
restart: unless-stopped
tei-embedding-service:
image: ${REGISTRY:-opea}/tei-gaudi:${TAG:-latest}
image: ghcr.io/huggingface/tei-gaudi:latest
container_name: tei-embedding-gaudi-server
ports:
- "8090:80"
@@ -141,7 +145,7 @@ services:
HF_HUB_ENABLE_HF_TRANSFER: 0
restart: unless-stopped
tgi-service:
image: ghcr.io/huggingface/tgi-gaudi:2.0.1
image: ghcr.io/huggingface/tgi-gaudi:2.0.5
container_name: tgi-gaudi-server
ports:
- "8008:80"
@@ -151,11 +155,15 @@ services:
no_proxy: ${no_proxy}
http_proxy: ${http_proxy}
https_proxy: ${https_proxy}
HF_TOKEN: ${HUGGINGFACEHUB_API_TOKEN}
HUGGING_FACE_HUB_TOKEN: ${HUGGINGFACEHUB_API_TOKEN}
HF_HUB_DISABLE_PROGRESS_BARS: 1
HF_HUB_ENABLE_HF_TRANSFER: 0
HABANA_VISIBLE_DEVICES: all
OMPI_MCA_btl_vader_single_copy_mechanism: none
ENABLE_HPU_GRAPH: true
LIMIT_HPU_GRAPH: true
USE_FLASH_ATTENTION: true
FLASH_ATTENTION_RECOMPUTE: true
runtime: habana
cap_add:
- SYS_NICE

View File

@@ -25,7 +25,7 @@ services:
TEI_ENDPOINT: ${TEI_EMBEDDING_ENDPOINT}
HUGGINGFACEHUB_API_TOKEN: ${HUGGINGFACEHUB_API_TOKEN}
tei-embedding-service:
image: ${REGISTRY:-opea}/tei-gaudi:${TAG:-latest}
image: ghcr.io/huggingface/tei-gaudi:latest
container_name: tei-embedding-gaudi-server
ports:
- "8090:80"
@@ -108,7 +108,7 @@ services:
# HF_HUB_ENABLE_HF_TRANSFER: 0
# restart: unless-stopped
tgi-service:
image: ghcr.io/huggingface/tgi-gaudi:2.0.1
image: ghcr.io/huggingface/tgi-gaudi:2.0.5
container_name: tgi-gaudi-server
ports:
- "8005:80"
@@ -118,11 +118,15 @@ services:
no_proxy: ${no_proxy}
http_proxy: ${http_proxy}
https_proxy: ${https_proxy}
HF_TOKEN: ${HUGGINGFACEHUB_API_TOKEN}
HUGGING_FACE_HUB_TOKEN: ${HUGGINGFACEHUB_API_TOKEN}
HF_HUB_DISABLE_PROGRESS_BARS: 1
HF_HUB_ENABLE_HF_TRANSFER: 0
HABANA_VISIBLE_DEVICES: all
OMPI_MCA_btl_vader_single_copy_mechanism: none
ENABLE_HPU_GRAPH: true
LIMIT_HPU_GRAPH: true
USE_FLASH_ATTENTION: true
FLASH_ATTENTION_RECOMPUTE: true
runtime: habana
cap_add:
- SYS_NICE

View File

@@ -25,7 +25,7 @@ services:
TEI_ENDPOINT: ${TEI_EMBEDDING_ENDPOINT}
HUGGINGFACEHUB_API_TOKEN: ${HUGGINGFACEHUB_API_TOKEN}
tei-embedding-service:
image: ${REGISTRY:-opea}/tei-gaudi:${TAG:-latest}
image: ghcr.io/huggingface/tei-gaudi:latest
container_name: tei-embedding-gaudi-server
ports:
- "8090:80"
@@ -73,7 +73,7 @@ services:
INDEX_NAME: ${INDEX_NAME}
restart: unless-stopped
tei-reranking-service:
image: ghcr.io/huggingface/text-embeddings-inference:cpu-1.2
image: ghcr.io/huggingface/text-embeddings-inference:cpu-1.5
container_name: tei-reranking-gaudi-server
ports:
- "8808:80"

View File

@@ -25,7 +25,7 @@ services:
TEI_ENDPOINT: ${TEI_EMBEDDING_ENDPOINT}
HUGGINGFACEHUB_API_TOKEN: ${HUGGINGFACEHUB_API_TOKEN}
tei-embedding-service:
image: ${REGISTRY:-opea}/tei-gaudi:${TAG:-latest}
image: ghcr.io/huggingface/tei-gaudi:latest
container_name: tei-embedding-gaudi-server
ports:
- "8090:80"
@@ -73,7 +73,7 @@ services:
INDEX_NAME: ${INDEX_NAME}
restart: unless-stopped
tei-reranking-service:
image: ghcr.io/huggingface/text-embeddings-inference:cpu-1.2
image: ghcr.io/huggingface/text-embeddings-inference:cpu-1.5
container_name: tei-reranking-gaudi-server
ports:
- "8808:80"

View File

@@ -25,7 +25,7 @@ services:
TEI_ENDPOINT: ${TEI_EMBEDDING_ENDPOINT}
HUGGINGFACEHUB_API_TOKEN: ${HUGGINGFACEHUB_API_TOKEN}
tei-embedding-service:
image: ${REGISTRY:-opea}/tei-gaudi:${TAG:-latest}
image: ghcr.io/huggingface/tei-gaudi:latest
container_name: tei-embedding-gaudi-server
ports:
- "8090:80"
@@ -75,7 +75,7 @@ services:
INDEX_NAME: ${INDEX_NAME}
restart: unless-stopped
tgi-service:
image: ghcr.io/huggingface/tgi-gaudi:2.0.1
image: ghcr.io/huggingface/tgi-gaudi:2.0.5
container_name: tgi-gaudi-server
ports:
- "8005:80"
@@ -85,11 +85,15 @@ services:
no_proxy: ${no_proxy}
http_proxy: ${http_proxy}
https_proxy: ${https_proxy}
HF_TOKEN: ${HUGGINGFACEHUB_API_TOKEN}
HUGGING_FACE_HUB_TOKEN: ${HUGGINGFACEHUB_API_TOKEN}
HF_HUB_DISABLE_PROGRESS_BARS: 1
HF_HUB_ENABLE_HF_TRANSFER: 0
HABANA_VISIBLE_DEVICES: all
OMPI_MCA_btl_vader_single_copy_mechanism: none
ENABLE_HPU_GRAPH: true
LIMIT_HPU_GRAPH: true
USE_FLASH_ATTENTION: true
FLASH_ATTENTION_RECOMPUTE: true
runtime: habana
cap_add:
- SYS_NICE

View File

@@ -56,16 +56,16 @@ f810f3b4d329 opea/embedding-tei:latest "python e
2fa17d84605f opea/dataprep-redis:latest "python prepare_doc_…" 2 minutes ago Up 2 minutes 0.0.0.0:6007->6007/tcp, :::6007->6007/tcp dataprep-redis-server
69e1fb59e92c opea/retriever-redis:latest "/home/user/comps/re…" 2 minutes ago Up 2 minutes 0.0.0.0:7000->7000/tcp, :::7000->7000/tcp retriever-redis-server
313b9d14928a opea/reranking-tei:latest "python reranking_te…" 2 minutes ago Up 2 minutes 0.0.0.0:8000->8000/tcp, :::8000->8000/tcp reranking-tei-gaudi-server
05c40b636239 ghcr.io/huggingface/tgi-gaudi:1.2.1 "text-generation-lau…" 2 minutes ago Exited (1) About a minute ago tgi-gaudi-server
174bd43fa6b5 opea/tei-gaudi:latest "text-embeddings-rou…" 2 minutes ago Up 2 minutes 0.0.0.0:8090->80/tcp, :::8090->80/tcp tei-embedding-gaudi-server
05c40b636239 ghcr.io/huggingface/tgi-gaudi:2.0.5 "text-generation-lau…" 2 minutes ago Exited (1) About a minute ago tgi-gaudi-server
174bd43fa6b5 ghcr.io/huggingface/tei-gaudi:latest "text-embeddings-rou…" 2 minutes ago Up 2 minutes 0.0.0.0:8090->80/tcp, :::8090->80/tcp tei-embedding-gaudi-server
74084469aa33 redis/redis-stack:7.2.0-v9 "/entrypoint.sh" 2 minutes ago Up 2 minutes 0.0.0.0:6379->6379/tcp, :::6379->6379/tcp, 0.0.0.0:8001->8001/tcp, :::8001->8001/tcp redis-vector-db
88399dbc9e43 ghcr.io/huggingface/text-embeddings-inference:cpu-1.5 "text-embeddings-rou…" 2 minutes ago Up 2 minutes 0.0.0.0:8808->80/tcp, :::8808->80/tcp tei-reranking-gaudi-server
```
In this case, `ghcr.io/huggingface/tgi-gaudi:1.2.1` Existed.
In this case, `ghcr.io/huggingface/tgi-gaudi:2.0.5` Existed.
```
05c40b636239 ghcr.io/huggingface/tgi-gaudi:1.2.1 "text-generation-lau…" 2 minutes ago Exited (1) About a minute ago tgi-gaudi-server
05c40b636239 ghcr.io/huggingface/tgi-gaudi:2.0.5 "text-generation-lau…" 2 minutes ago Exited (1) About a minute ago tgi-gaudi-server
```
Next we can check the container logs to get to know what happened during the docker start.
@@ -76,7 +76,7 @@ Check the log of container by:
`docker logs <CONTAINER ID> -t`
View the logs of `ghcr.io/huggingface/tgi-gaudi:1.2.1`
View the logs of `ghcr.io/huggingface/tgi-gaudi:2.0.5`
`docker logs 05c40b636239 -t`
@@ -105,7 +105,7 @@ So just make sure the devices are available.
Here is another failure example:
```
f7a08f9867f9 ghcr.io/huggingface/tgi-gaudi:1.2.1 "text-generation-lau…" 16 seconds ago Exited (2) 14 seconds ago tgi-gaudi-server
f7a08f9867f9 ghcr.io/huggingface/tgi-gaudi:2.0.5 "text-generation-lau…" 16 seconds ago Exited (2) 14 seconds ago tgi-gaudi-server
```
Check the log by `docker logs f7a08f9867f9 -t`.
@@ -122,7 +122,7 @@ View the docker input parameters in `./ChatQnA/docker_compose/intel/hpu/gaudi/co
```
tgi-service:
image: ghcr.io/huggingface/tgi-gaudi:1.2.1
image: ghcr.io/huggingface/tgi-gaudi:2.0.5
container_name: tgi-gaudi-server
ports:
- "8008:80"
@@ -131,9 +131,13 @@ View the docker input parameters in `./ChatQnA/docker_compose/intel/hpu/gaudi/co
environment:
http_proxy: ${http_proxy}
https_proxy: ${https_proxy}
HF_TOKEN: ${HUGGINGFACEHUB_API_TOKEN}
HUGGING_FACE_HUB_TOKEN: ${HUGGINGFACEHUB_API_TOKEN}
HABANA_VISIBLE_DEVICES: all
OMPI_MCA_btl_vader_single_copy_mechanism: none
ENABLE_HPU_GRAPH: true
LIMIT_HPU_GRAPH: true
USE_FLASH_ATTENTION: true
FLASH_ATTENTION_RECOMPUTE: true
runtime: habana
cap_add:
- SYS_NICE

View File

@@ -52,7 +52,7 @@ In following cases, you could build docker image from source by yourself.
- Failed to download the docker image.
- Use the latest or special version.
- If you want to use a specific version of Docker image.
Please refer to 'Build Docker Images' in below.

View File

@@ -125,12 +125,6 @@ services:
dockerfile: comps/guardrails/llama_guard/langchain/Dockerfile
extends: chatqna
image: ${REGISTRY:-opea}/guardrails-tgi:${TAG:-latest}
tei-gaudi:
build:
context: tei-gaudi
dockerfile: Dockerfile-hpu
extends: chatqna
image: ${REGISTRY:-opea}/tei-gaudi:${TAG:-latest}
vllm:
build:
context: vllm

View File

@@ -13,7 +13,7 @@
## Deploy On Xeon
```
cd GenAIExamples/ChatQnA/kubernetes/intel/cpu/xeon/manifests
cd GenAIExamples/ChatQnA/kubernetes/intel/cpu/xeon/manifest
export HUGGINGFACEHUB_API_TOKEN="YourOwnToken"
sed -i "s/insert-your-huggingface-token-here/${HUGGINGFACEHUB_API_TOKEN}/g" chatqna.yaml
kubectl apply -f chatqna.yaml
@@ -33,7 +33,7 @@ kubectl apply -f chatqna_bf16.yaml
## Deploy On Gaudi
```
cd GenAIExamples/ChatQnA/kubernetes/intel/hpu/gaudi/manifests
cd GenAIExamples/ChatQnA/kubernetes/intel/hpu/gaudi/manifest
export HUGGINGFACEHUB_API_TOKEN="YourOwnToken"
sed -i "s/insert-your-huggingface-token-here/${HUGGINGFACEHUB_API_TOKEN}/g" chatqna.yaml
kubectl apply -f chatqna.yaml

View File

@@ -2,9 +2,9 @@
This document outlines the deployment process for a ChatQnA application utilizing the [GenAIComps](https://github.com/opea-project/GenAIComps.git) microservice pipeline components on Intel Xeon server and Gaudi machines.
The ChatQnA Service leverages a Kubernetes operator called genai-microservices-connector(GMC). GMC supports connecting microservices to create pipelines based on the specification in the pipeline yaml file in addition to allowing the user to dynamically control which model is used in a service such as an LLM or embedder. The underlying pipeline language also supports using external services that may be running in public or private cloud elsewhere.
The ChatQnA Service leverages a Kubernetes operator called genai-microservices-connector (GMC). GMC supports connecting microservices to create pipelines based on the specification in the pipeline yaml file in addition to allowing the user to dynamically control which model is used in a service such as an LLM or embedder. The underlying pipeline language also supports using external services that may be running in public or private cloud elsewhere.
Install GMC in your Kubernetes cluster, if you have not already done so, by following the steps in Section "Getting Started" at [GMC Install](https://github.com/opea-project/GenAIInfra/tree/main/microservices-connector). Soon as we publish images to Docker Hub, at which point no builds will be required, simplifying install.
Install GMC in your Kubernetes cluster, if you have not already done so, by following the steps in Section "Getting Started" at [GMC Install](https://github.com/opea-project/GenAIInfra/tree/main/microservices-connector/README.md). Soon as we publish images to Docker Hub, at which point no builds will be required, simplifying install.
The ChatQnA application is defined as a Custom Resource (CR) file that the above GMC operator acts upon. It first checks if the microservices listed in the CR yaml file are running, if not starts them and then proceeds to connect them. When the ChatQnA RAG pipeline is ready, the service endpoint details are returned, letting you use the application. Should you use "kubectl get pods" commands you will see all the component microservices, in particular `embedding`, `retriever`, `rerank`, and `llm`.
@@ -27,8 +27,8 @@ The ChatQnA uses the below prebuilt images if you choose a Xeon deployment
Should you desire to use the Gaudi accelerator, two alternate images are used for the embedding and llm services.
For Gaudi:
- tei-embedding-service: opea/tei-gaudi:latest
- tgi-service: ghcr.io/huggingface/tgi-gaudi:1.2.1
- tei-embedding-service: ghcr.io/huggingface/tei-gaudi:latest
- tgi-service: gghcr.io/huggingface/tgi-gaudi:2.0.5
> [NOTE]
> Please refer to [Xeon README](https://github.com/opea-project/GenAIExamples/blob/main/ChatQnA/docker_compose/intel/cpu/xeon/README.md) or [Gaudi README](https://github.com/opea-project/GenAIExamples/blob/main/ChatQnA/docker_compose/intel/hpu/gaudi/README.md) to build the OPEA images. These too will be available on Docker Hub soon to simplify use.

View File

@@ -1474,7 +1474,7 @@ spec:
runAsUser: 1000
seccompProfile:
type: RuntimeDefault
image: "ghcr.io/huggingface/text-generation-inference:2.2.0"
image: "ghcr.io/huggingface/text-generation-inference:sha-e4201f4-intel-cpu"
imagePullPolicy: IfNotPresent
volumeMounts:
- mountPath: /data
@@ -1554,7 +1554,7 @@ spec:
runAsUser: 1000
seccompProfile:
type: RuntimeDefault
image: "ghcr.io/huggingface/text-generation-inference:2.2.0"
image: "ghcr.io/huggingface/text-generation-inference:sha-e4201f4-intel-cpu"
imagePullPolicy: IfNotPresent
volumeMounts:
- mountPath: /data

View File

@@ -1294,7 +1294,7 @@ spec:
runAsUser: 1000
seccompProfile:
type: RuntimeDefault
image: "ghcr.io/huggingface/tei-gaudi:synapse_1.16"
image: "ghcr.io/huggingface/tei-gaudi:latest"
imagePullPolicy: IfNotPresent
args:
- "--auto-truncate"
@@ -1477,7 +1477,7 @@ spec:
runAsUser: 1000
seccompProfile:
type: RuntimeDefault
image: "ghcr.io/huggingface/tgi-gaudi:2.0.1"
image: "ghcr.io/huggingface/tgi-gaudi:2.0.5"
imagePullPolicy: IfNotPresent
volumeMounts:
- mountPath: /data
@@ -1558,7 +1558,7 @@ spec:
runAsUser: 1000
seccompProfile:
type: RuntimeDefault
image: "ghcr.io/huggingface/tgi-gaudi:2.0.1"
image: "ghcr.io/huggingface/tgi-gaudi:2.0.5"
imagePullPolicy: IfNotPresent
volumeMounts:
- mountPath: /data

View File

@@ -1115,7 +1115,7 @@ spec:
runAsUser: 1000
seccompProfile:
type: RuntimeDefault
image: "ghcr.io/huggingface/tei-gaudi:synapse_1.16"
image: "ghcr.io/huggingface/tei-gaudi:latest"
imagePullPolicy: IfNotPresent
args:
- "--auto-truncate"
@@ -1298,7 +1298,7 @@ spec:
runAsUser: 1000
seccompProfile:
type: RuntimeDefault
image: "ghcr.io/huggingface/tgi-gaudi:2.0.1"
image: "ghcr.io/huggingface/tgi-gaudi:2.0.5"
imagePullPolicy: IfNotPresent
volumeMounts:
- mountPath: /data

View File

@@ -17,14 +17,14 @@ ip_address=$(hostname -I | awk '{print $1}')
function build_docker_images() {
cd $WORKPATH/docker_image_build
git clone https://github.com/opea-project/GenAIComps.git && cd GenAIComps && git checkout "${opea_branch:-"main"}" && cd ../
git clone https://github.com/huggingface/tei-gaudi
echo "Build all the images with --no-cache, check docker_image_build.log for details..."
service_list="chatqna-guardrails chatqna-ui dataprep-redis embedding-tei retriever-redis reranking-tei llm-tgi tei-gaudi guardrails-tgi"
service_list="chatqna-guardrails chatqna-ui dataprep-redis embedding-tei retriever-redis reranking-tei llm-tgi guardrails-tgi"
docker compose -f build.yaml build ${service_list} --no-cache > ${LOG_PATH}/docker_image_build.log
docker pull ghcr.io/huggingface/tgi-gaudi:2.0.1
docker pull ghcr.io/huggingface/tgi-gaudi:2.0.5
docker pull ghcr.io/huggingface/text-embeddings-inference:cpu-1.5
docker pull ghcr.io/huggingface/tei-gaudi:latest
docker images && sleep 1s
}

View File

@@ -17,14 +17,14 @@ ip_address=$(hostname -I | awk '{print $1}')
function build_docker_images() {
cd $WORKPATH/docker_image_build
git clone https://github.com/opea-project/GenAIComps.git && cd GenAIComps && git checkout "${opea_branch:-"main"}" && cd ../
git clone https://github.com/huggingface/tei-gaudi
echo "Build all the images with --no-cache, check docker_image_build.log for details..."
service_list="chatqna-no-wrapper chatqna-ui dataprep-redis retriever-redis tei-gaudi"
service_list="chatqna-no-wrapper chatqna-ui dataprep-redis retriever-redis"
docker compose -f build.yaml build ${service_list} --no-cache > ${LOG_PATH}/docker_image_build.log
docker pull ghcr.io/huggingface/tgi-gaudi:2.0.1
docker pull ghcr.io/huggingface/tgi-gaudi:2.0.5
docker pull ghcr.io/huggingface/text-embeddings-inference:cpu-1.5
docker pull ghcr.io/huggingface/tei-gaudi:latest
docker images && sleep 1s
}

View File

@@ -22,7 +22,7 @@ function build_docker_images() {
service_list="chatqna-no-wrapper chatqna-ui chatqna-conversation-ui dataprep-redis retriever-redis"
docker compose -f build.yaml build ${service_list} --no-cache > ${LOG_PATH}/docker_image_build.log
docker pull ghcr.io/huggingface/tgi-gaudi:2.0.1
docker pull ghcr.io/huggingface/tgi-gaudi:2.0.5
docker pull ghcr.io/huggingface/text-embeddings-inference:cpu-1.5
docker images && sleep 1s

View File

@@ -17,14 +17,14 @@ ip_address=$(hostname -I | awk '{print $1}')
function build_docker_images() {
cd $WORKPATH/docker_image_build
git clone https://github.com/opea-project/GenAIComps.git && cd GenAIComps && git checkout "${opea_branch:-"main"}" && cd ../
git clone https://github.com/huggingface/tei-gaudi
echo "Build all the images with --no-cache, check docker_image_build.log for details..."
service_list="chatqna chatqna-ui dataprep-redis embedding-tei retriever-redis reranking-tei llm-tgi tei-gaudi nginx"
service_list="chatqna chatqna-ui dataprep-redis embedding-tei retriever-redis reranking-tei llm-tgi nginx"
docker compose -f build.yaml build ${service_list} --no-cache > ${LOG_PATH}/docker_image_build.log
docker pull ghcr.io/huggingface/tgi-gaudi:2.0.1
docker pull ghcr.io/huggingface/tgi-gaudi:2.0.5
docker pull ghcr.io/huggingface/text-embeddings-inference:cpu-1.5
docker pull ghcr.io/huggingface/tei-gaudi:latest
docker images && sleep 1s
}

View File

@@ -22,7 +22,7 @@ function build_docker_images() {
service_list="chatqna chatqna-ui chatqna-conversation-ui dataprep-redis embedding-tei retriever-redis reranking-tei llm-tgi nginx"
docker compose -f build.yaml build ${service_list} --no-cache > ${LOG_PATH}/docker_image_build.log
docker pull ghcr.io/huggingface/tgi-gaudi:2.0.1
docker pull ghcr.io/huggingface/tgi-gaudi:2.0.5
docker pull ghcr.io/huggingface/text-embeddings-inference:cpu-1.5
docker images && sleep 1s

View File

@@ -17,13 +17,13 @@ ip_address=$(hostname -I | awk '{print $1}')
function build_docker_images() {
cd $WORKPATH/docker_image_build
git clone https://github.com/opea-project/GenAIComps.git && cd GenAIComps && git checkout "${opea_branch:-"main"}" && cd ../
git clone https://github.com/huggingface/tei-gaudi
echo "Build all the images with --no-cache, check docker_image_build.log for details..."
service_list="chatqna chatqna-ui dataprep-redis embedding-tei retriever-redis reranking-tei tei-gaudi llm-vllm-hpu llm-vllm"
service_list="chatqna chatqna-ui dataprep-redis embedding-tei retriever-redis reranking-tei llm-vllm-hpu llm-vllm"
docker compose -f build.yaml build ${service_list} --no-cache > ${LOG_PATH}/docker_image_build.log
docker pull ghcr.io/huggingface/text-embeddings-inference:cpu-1.2
docker pull ghcr.io/huggingface/text-embeddings-inference:cpu-1.5
docker pull ghcr.io/huggingface/tei-gaudi:latest
docker images && sleep 1s
}

View File

@@ -23,7 +23,7 @@ function build_docker_images() {
service_list="chatqna chatqna-ui dataprep-redis embedding-tei retriever-redis reranking-tei llm-vllm vllm"
docker compose -f build.yaml build ${service_list} --no-cache > ${LOG_PATH}/docker_image_build.log
docker pull ghcr.io/huggingface/tgi-gaudi:2.0.1
docker pull ghcr.io/huggingface/tgi-gaudi:2.0.5
docker pull ghcr.io/huggingface/text-embeddings-inference:cpu-1.5
docker images && sleep 1s

View File

@@ -17,13 +17,13 @@ ip_address=$(hostname -I | awk '{print $1}')
function build_docker_images() {
cd $WORKPATH/docker_image_build
git clone https://github.com/opea-project/GenAIComps.git && cd GenAIComps && git checkout "${opea_branch:-"main"}" && cd ../
git clone https://github.com/huggingface/tei-gaudi
echo "Build all the images with --no-cache, check docker_image_build.log for details..."
service_list="chatqna chatqna-ui dataprep-redis embedding-tei retriever-redis reranking-tei tei-gaudi llm-vllm-ray-hpu llm-vllm-ray"
service_list="chatqna chatqna-ui dataprep-redis embedding-tei retriever-redis reranking-tei llm-vllm-ray-hpu llm-vllm-ray"
docker compose -f build.yaml build ${service_list} --no-cache > ${LOG_PATH}/docker_image_build.log
docker pull ghcr.io/huggingface/text-embeddings-inference:cpu-1.2
docker pull ghcr.io/huggingface/text-embeddings-inference:cpu-1.5
docker pull ghcr.io/huggingface/tei-gaudi:latest
docker images && sleep 1s
}

View File

@@ -17,14 +17,14 @@ ip_address=$(hostname -I | awk '{print $1}')
function build_docker_images() {
cd $WORKPATH/docker_image_build
git clone https://github.com/opea-project/GenAIComps.git && cd GenAIComps && git checkout "${opea_branch:-"main"}" && cd ../
git clone https://github.com/huggingface/tei-gaudi
echo "Build all the images with --no-cache, check docker_image_build.log for details..."
service_list="chatqna-without-rerank chatqna-ui dataprep-redis embedding-tei retriever-redis llm-tgi tei-gaudi"
service_list="chatqna-without-rerank chatqna-ui dataprep-redis embedding-tei retriever-redis llm-tgi"
docker compose -f build.yaml build ${service_list} --no-cache > ${LOG_PATH}/docker_image_build.log
docker pull ghcr.io/huggingface/tgi-gaudi:2.0.1
docker pull ghcr.io/huggingface/tgi-gaudi:2.0.5
docker pull ghcr.io/huggingface/text-embeddings-inference:cpu-1.5
docker pull ghcr.io/huggingface/tei-gaudi:latest
docker images && sleep 1s
}

View File

@@ -22,7 +22,7 @@ function build_docker_images() {
service_list="chatqna-without-rerank chatqna-ui chatqna-conversation-ui dataprep-redis embedding-tei retriever-redis llm-tgi"
docker compose -f build.yaml build ${service_list} --no-cache > ${LOG_PATH}/docker_image_build.log
docker pull ghcr.io/huggingface/tgi-gaudi:2.0.1
docker pull ghcr.io/huggingface/tgi-gaudi:2.0.5
docker pull ghcr.io/huggingface/text-embeddings-inference:cpu-1.5
docker images && sleep 1s

View File

@@ -106,7 +106,7 @@ Refer to the [Kubernetes Guide](./kubernetes/intel/README.md) for instructions o
Install Helm (version >= 3.15) first. Refer to the [Helm Installation Guide](https://helm.sh/docs/intro/install/) for more information.
Refer to the [CodeGen helm chart](https://github.com/opea-project/GenAIInfra/tree/main/helm-charts/codegen) for instructions on deploying CodeGen into Kubernetes on Xeon & Gaudi.
Refer to the [CodeGen helm chart](https://github.com/opea-project/GenAIInfra/tree/main/helm-charts/codegen/README.md) for instructions on deploying CodeGen into Kubernetes on Xeon & Gaudi.
## Consume CodeGen Service
@@ -128,7 +128,7 @@ Two ways of consuming CodeGen Service:
## Troubleshooting
1. If you get errors like "Access Denied", [validate micro service](https://github.com/opea-project/GenAIExamples/tree/main/CodeGen/docker_compose/intel/cpu/xeon#validate-microservices) first. A simple example:
1. If you get errors like "Access Denied", [validate micro service](https://github.com/opea-project/GenAIExamples/tree/main/CodeGen/docker_compose/intel/cpu/xeon/README.md#validate-microservices) first. A simple example:
```bash
http_proxy=""

View File

@@ -8,7 +8,7 @@ We evaluate accuracy by [bigcode-evaluation-harness](https://github.com/bigcode-
### Launch CodeGen microservice
Please refer to [CodeGen Examples](https://github.com/opea-project/GenAIExamples/tree/main/CodeGen), follow the guide to deploy CodeGen megeservice.
Please refer to [CodeGen Examples](https://github.com/opea-project/GenAIExamples/tree/main/CodeGen/README.md), follow the guide to deploy CodeGen megeservice.
Use `curl` command to test codegen service and ensure that it has started properly

View File

@@ -6,7 +6,7 @@ opea_micro_services:
tgi-service:
host: ${TGI_SERVICE_IP}
ports: ${TGI_SERVICE_PORT}
image: ghcr.io/huggingface/tgi-gaudi:2.0.1
image: ghcr.io/huggingface/tgi-gaudi:2.0.5
volumes:
- "./data:/data"
runtime: habana
@@ -17,7 +17,11 @@ opea_micro_services:
HUGGINGFACEHUB_API_TOKEN: ${HUGGINGFACEHUB_API_TOKEN}
HABANA_VISIBLE_DEVICES: all
OMPI_MCA_btl_vader_single_copy_mechanism: none
HF_TOKEN: ${HUGGINGFACEHUB_API_TOKEN}
HUGGING_FACE_HUB_TOKEN: ${HUGGINGFACEHUB_API_TOKEN}
ENABLE_HPU_GRAPH: true
LIMIT_HPU_GRAPH: true
USE_FLASH_ATTENTION: true
FLASH_ATTENTION_RECOMPUTE: true
model-id: ${LLM_MODEL_ID}
llm:
host: ${LLM_SERVICE_HOST_IP}

View File

@@ -3,7 +3,7 @@
services:
tgi-service:
image: ghcr.io/huggingface/tgi-gaudi:2.0.1
image: ghcr.io/huggingface/tgi-gaudi:2.0.5
container_name: tgi-gaudi-server
ports:
- "8028:80"
@@ -15,7 +15,11 @@ services:
https_proxy: ${https_proxy}
HABANA_VISIBLE_DEVICES: all
OMPI_MCA_btl_vader_single_copy_mechanism: none
HF_TOKEN: ${HUGGINGFACEHUB_API_TOKEN}
HUGGING_FACE_HUB_TOKEN: ${HUGGINGFACEHUB_API_TOKEN}
ENABLE_HPU_GRAPH: true
LIMIT_HPU_GRAPH: true
USE_FLASH_ATTENTION: true
FLASH_ATTENTION_RECOMPUTE: true
runtime: habana
cap_add:
- SYS_NICE

View File

@@ -2,7 +2,7 @@
This document outlines the deployment process for a Code Generation (CodeGen) application that utilizes the [GenAIComps](https://github.com/opea-project/GenAIComps.git) microservice components on Intel Xeon servers and Gaudi machines.
Install GMC in your Kubernetes cluster, if you have not already done so, by following the steps in Section "Getting Started" at [GMC Install](https://github.com/opea-project/GenAIInfra/tree/main/microservices-connector#readme). We will soon publish images to Docker Hub, at which point no builds will be required, further simplifying install.
Install GMC in your Kubernetes cluster, if you have not already done so, by following the steps in Section "Getting Started" at [GMC Install](https://github.com/opea-project/GenAIInfra/tree/main/microservices-connector/README.md). We will soon publish images to Docker Hub, at which point no builds will be required, further simplifying install.
If you have only Intel Xeon machines you could use the codegen_xeon.yaml file or if you have a Gaudi cluster you could use codegen_gaudi.yaml
In the below example we illustrate on Xeon.

View File

@@ -405,7 +405,7 @@ spec:
runAsUser: 1000
seccompProfile:
type: RuntimeDefault
image: "ghcr.io/huggingface/tgi-gaudi:2.0.1"
image: "ghcr.io/huggingface/tgi-gaudi:2.0.5"
imagePullPolicy: IfNotPresent
volumeMounts:
- mountPath: /data

View File

@@ -22,7 +22,7 @@ function build_docker_images() {
service_list="codegen codegen-ui llm-tgi"
docker compose -f build.yaml build ${service_list} --no-cache > ${LOG_PATH}/docker_image_build.log
docker pull ghcr.io/huggingface/tgi-gaudi:2.0.1
docker pull ghcr.io/huggingface/tgi-gaudi:2.0.5
docker images && sleep 1s
}

View File

@@ -99,7 +99,7 @@ Refer to the [Code Translation Kubernetes Guide](./kubernetes/intel/README.md)
Install Helm (version >= 3.15) first. Refer to the [Helm Installation Guide](https://helm.sh/docs/intro/install/) for more information.
Refer to the [CodeTrans helm chart](https://github.com/opea-project/GenAIInfra/tree/main/helm-charts/codetrans) for instructions on deploying CodeTrans into Kubernetes on Xeon & Gaudi.
Refer to the [CodeTrans helm chart](https://github.com/opea-project/GenAIInfra/tree/main/helm-charts/codetrans/README.md) for instructions on deploying CodeTrans into Kubernetes on Xeon & Gaudi.
## Consume Code Translation Service
@@ -121,7 +121,7 @@ By default, the UI runs on port 5173 internally.
## Troubleshooting
1. If you get errors like "Access Denied", [validate micro service](https://github.com/opea-project/GenAIExamples/tree/main/CodeTrans/docker_compose/intel/cpu/xeon#validate-microservices) first. A simple example:
1. If you get errors like "Access Denied", [validate micro service](https://github.com/opea-project/GenAIExamples/tree/main/CodeTrans/docker_compose/intel/cpu/xeon/README.md#validate-microservices) first. A simple example:
```bash
http_proxy=""

View File

@@ -6,7 +6,7 @@ opea_micro_services:
tgi-service:
host: ${TGI_SERVICE_IP}
ports: ${TGI_SERVICE_PORT}
image: ghcr.io/huggingface/tgi-gaudi:2.0.1
image: ghcr.io/huggingface/tgi-gaudi:2.0.5
volumes:
- "./data:/data"
runtime: habana
@@ -17,7 +17,11 @@ opea_micro_services:
HUGGINGFACEHUB_API_TOKEN: ${HUGGINGFACEHUB_API_TOKEN}
HABANA_VISIBLE_DEVICES: all
OMPI_MCA_btl_vader_single_copy_mechanism: none
HF_TOKEN: ${HUGGINGFACEHUB_API_TOKEN}
HUGGING_FACE_HUB_TOKEN: ${HUGGINGFACEHUB_API_TOKEN}
ENABLE_HPU_GRAPH: true
LIMIT_HPU_GRAPH: true
USE_FLASH_ATTENTION: true
FLASH_ATTENTION_RECOMPUTE: true
model-id: ${LLM_MODEL_ID}
llm:
host: ${LLM_SERVICE_HOST_IP}

View File

@@ -3,7 +3,7 @@
services:
tgi-service:
image: ghcr.io/huggingface/tgi-gaudi:2.0.1
image: ghcr.io/huggingface/tgi-gaudi:2.0.5
container_name: codetrans-tgi-service
ports:
- "8008:80"
@@ -15,7 +15,11 @@ services:
https_proxy: ${https_proxy}
HABANA_VISIBLE_DEVICES: all
OMPI_MCA_btl_vader_single_copy_mechanism: none
HF_TOKEN: ${HUGGINGFACEHUB_API_TOKEN}
HUGGING_FACE_HUB_TOKEN: ${HUGGINGFACEHUB_API_TOKEN}
ENABLE_HPU_GRAPH: true
LIMIT_HPU_GRAPH: true
USE_FLASH_ATTENTION: true
FLASH_ATTENTION_RECOMPUTE: true
runtime: habana
cap_add:
- SYS_NICE

View File

@@ -2,7 +2,7 @@
This document outlines the deployment process for a Code Translation (CodeTran) application that utilizes the [GenAIComps](https://github.com/opea-project/GenAIComps.git) microservice components on Intel Xeon servers and Gaudi machines.
Please install GMC in your Kubernetes cluster, if you have not already done so, by following the steps in Section "Getting Started" at [GMC Install](https://github.com/opea-project/GenAIInfra/tree/main/microservices-connector#readme). We will soon publish images to Docker Hub, at which point no builds will be required, further simplifying install.
Please install GMC in your Kubernetes cluster, if you have not already done so, by following the steps in Section "Getting Started" at [GMC Install](https://github.com/opea-project/GenAIInfra/tree/main/microservices-connector/README.md). We will soon publish images to Docker Hub, at which point no builds will be required, further simplifying install.
If you have only Intel Xeon machines you could use the codetrans_xeon.yaml file or if you have a Gaudi cluster you could use codetrans_gaudi.yaml
In the below example we illustrate on Xeon.

View File

@@ -405,7 +405,7 @@ spec:
runAsUser: 1000
seccompProfile:
type: RuntimeDefault
image: "ghcr.io/huggingface/tgi-gaudi:2.0.1"
image: "ghcr.io/huggingface/tgi-gaudi:2.0.5"
imagePullPolicy: IfNotPresent
volumeMounts:
- mountPath: /data

View File

@@ -22,7 +22,7 @@ function build_docker_images() {
service_list="codetrans codetrans-ui llm-tgi nginx"
docker compose -f build.yaml build ${service_list} --no-cache > ${LOG_PATH}/docker_image_build.log
docker pull ghcr.io/huggingface/tgi-gaudi:2.0.1
docker pull ghcr.io/huggingface/tgi-gaudi:2.0.5
docker images && sleep 1s
}

View File

@@ -1,8 +1,22 @@
# DocRetriever Application
DocRetriever are the most widely adopted use case for leveraging the different methodologies to match user query against a set of free-text records. DocRetriever is essential to RAG system, which bridges the knowledge gap by dynamically fetching relevant information from external sources, ensuring that responses generated remain factual and current. The core of this architecture are vector databases, which are instrumental in enabling efficient and semantic retrieval of information. These databases store data as vectors, allowing RAG to swiftly access the most pertinent documents or data points based on semantic similarity.
DocRetriever is the most widely adopted use case for leveraging the different methodologies to match user query against a set of free-text records. DocRetriever is essential to RAG system, which bridges the knowledge gap by dynamically fetching relevant information from external sources, ensuring that responses generated remain factual and current. The core of this architecture are vector databases, which are instrumental in enabling efficient and semantic retrieval of information. These databases store data as vectors, allowing RAG to swiftly access the most pertinent documents or data points based on semantic similarity.
## We provided DocRetriever with different deployment infra
- [docker xeon version](docker_compose/intel/cpu/xeon/) => minimum endpoints, easy to setup
- [docker gaudi version](docker_compose/intel/hpu/gaudi/) => with extra tei_gaudi endpoint, faster
- [docker xeon version](docker_compose/intel/cpu/xeon/README.md) => minimum endpoints, easy to setup
- [docker gaudi version](docker_compose/intel/hpu/gaudi/README.md) => with extra tei_gaudi endpoint, faster
## We allow users to set retriever/reranker hyperparams via requests
Example usage:
```python
url = "http://{host_ip}:{port}/v1/retrievaltool".format(host_ip=host_ip, port=port)
payload = {
"messages": query,
"k": 5, # retriever top k
"top_n": 2, # reranker top n
}
response = requests.post(url, json=payload)
```

View File

@@ -79,13 +79,26 @@ Retrieval from KnowledgeBase
```bash
curl http://${host_ip}:8889/v1/retrievaltool -X POST -H "Content-Type: application/json" -d '{
"text": "Explain the OPEA project?"
"messages": "Explain the OPEA project?"
}'
# expected output
{"id":"354e62c703caac8c547b3061433ec5e8","reranked_docs":[{"id":"06d5a5cefc06cf9a9e0b5fa74a9f233c","text":"Close SearchsearchMenu WikiNewsCommunity Daysx-twitter linkedin github searchStreamlining implementation of enterprise-grade Generative AIEfficiently integrate secure, performant, and cost-effective Generative AI workflows into business value.TODAYOPEA..."}],"initial_query":"Explain the OPEA project?"}
```
**Note**: `messages` is the required field. You can also pass in parameters for the retriever and reranker in the request. The parameters that can changed are listed below.
1. retriever
* search_type: str = "similarity"
* k: int = 4
* distance_threshold: Optional[float] = None
* fetch_k: int = 20
* lambda_mult: float = 0.5
* score_threshold: float = 0.2
2. reranker
* top_n: int = 1
## 5. Trouble shooting
1. check all containers are alive

View File

@@ -74,13 +74,30 @@ services:
HUGGINGFACEHUB_API_TOKEN: ${HUGGINGFACEHUB_API_TOKEN}
TEI_EMBEDDING_ENDPOINT: ${TEI_EMBEDDING_ENDPOINT}
restart: unless-stopped
tei-reranking-service:
image: ghcr.io/huggingface/text-embeddings-inference:cpu-1.5
container_name: tei-reranking-server
ports:
- "8808:80"
volumes:
- "./data:/data"
shm_size: 1g
environment:
no_proxy: ${no_proxy}
http_proxy: ${http_proxy}
https_proxy: ${https_proxy}
HUGGINGFACEHUB_API_TOKEN: ${HUGGINGFACEHUB_API_TOKEN}
HF_HUB_DISABLE_PROGRESS_BARS: 1
HF_HUB_ENABLE_HF_TRANSFER: 0
command: --model-id ${RERANK_MODEL_ID} --auto-truncate
reranking:
image: ${REGISTRY:-opea}/reranking-tei:${TAG:-latest}
container_name: reranking-tei-xeon-server
depends_on:
- tei-reranking-service
ports:
- "8000:8000"
ipc: host
entrypoint: python local_reranking.py
environment:
no_proxy: ${no_proxy}
http_proxy: ${http_proxy}

View File

@@ -80,13 +80,26 @@ Retrieval from KnowledgeBase
```bash
curl http://${host_ip}:8889/v1/retrievaltool -X POST -H "Content-Type: application/json" -d '{
"text": "Explain the OPEA project?"
"messages": "Explain the OPEA project?"
}'
# expected output
{"id":"354e62c703caac8c547b3061433ec5e8","reranked_docs":[{"id":"06d5a5cefc06cf9a9e0b5fa74a9f233c","text":"Close SearchsearchMenu WikiNewsCommunity Daysx-twitter linkedin github searchStreamlining implementation of enterprise-grade Generative AIEfficiently integrate secure, performant, and cost-effective Generative AI workflows into business value.TODAYOPEA..."}],"initial_query":"Explain the OPEA project?"}
```
**Note**: `messages` is the required field. You can also pass in parameters for the retriever and reranker in the request. The parameters that can changed are listed below.
1. retriever
* search_type: str = "similarity"
* k: int = 4
* distance_threshold: Optional[float] = None
* fetch_k: int = 20
* lambda_mult: float = 0.5
* score_threshold: float = 0.2
2. reranker
* top_n: int = 1
## 5. Trouble shooting
1. check all containers are alive

View File

@@ -28,7 +28,7 @@ services:
TEI_ENDPOINT: ${TEI_EMBEDDING_ENDPOINT}
HUGGINGFACEHUB_API_TOKEN: ${HUGGINGFACEHUB_API_TOKEN}
tei-embedding-service:
image: ${REGISTRY:-opea}/tei-gaudi:${TAG:-latest}
image: ghcr.io/huggingface/tei-gaudi:latest
container_name: tei-embedding-gaudi-server
ports:
- "8090:80"
@@ -77,13 +77,30 @@ services:
REDIS_URL: ${REDIS_URL}
INDEX_NAME: ${INDEX_NAME}
restart: unless-stopped
tei-reranking-service:
image: ghcr.io/huggingface/text-embeddings-inference:cpu-1.5
container_name: tei-reranking-gaudi-server
ports:
- "8808:80"
volumes:
- "./data:/data"
shm_size: 1g
environment:
no_proxy: ${no_proxy}
http_proxy: ${http_proxy}
https_proxy: ${https_proxy}
HUGGINGFACEHUB_API_TOKEN: ${HUGGINGFACEHUB_API_TOKEN}
HF_HUB_DISABLE_PROGRESS_BARS: 1
HF_HUB_ENABLE_HF_TRANSFER: 0
command: --model-id ${RERANK_MODEL_ID} --auto-truncate
reranking:
image: ${REGISTRY:-opea}/reranking-tei:${TAG:-latest}
container_name: reranking-tei-gaudi-server
depends_on:
- tei-reranking-service
ports:
- "8000:8000"
ipc: host
entrypoint: python local_reranking.py
environment:
no_proxy: ${no_proxy}
http_proxy: ${http_proxy}

View File

@@ -35,9 +35,3 @@ services:
dockerfile: comps/dataprep/redis/langchain/Dockerfile
extends: doc-index-retriever
image: ${REGISTRY:-opea}/dataprep-redis:${TAG:-latest}
tei-gaudi:
build:
context: tei-gaudi
dockerfile: Dockerfile-hpu
extends: doc-index-retriever
image: ${REGISTRY:-opea}/tei-gaudi:${TAG:-latest}

View File

@@ -0,0 +1,71 @@
# Copyright (C) 2024 Intel Corporation
# SPDX-License-Identifier: Apache-2.0
import argparse
import requests
def search_knowledge_base(query: str, url: str, request_type="chat_completion") -> str:
"""Search the knowledge base for a specific query."""
print(url)
proxies = {"http": ""}
if request_type == "chat_completion":
print("Sending chat completion request")
payload = {
"messages": query,
"k": 5,
"top_n": 2,
}
else:
print("Sending text request")
payload = {
"text": query,
}
response = requests.post(url, json=payload, proxies=proxies)
print(response)
if "documents" in response.json():
docs = response.json()["documents"]
context = ""
for i, doc in enumerate(docs):
if i == 0:
context = str(i) + ": " + doc
else:
context += "\n" + str(i) + ": " + doc
# print(context)
return context
elif "text" in response.json():
return response.json()["text"]
elif "reranked_docs" in response.json():
docs = response.json()["reranked_docs"]
context = ""
for i, doc in enumerate(docs):
if i == 0:
context = doc["text"]
else:
context += "\n" + doc["text"]
# print(context)
return context
else:
return "Error parsing response from the knowledge base."
def main():
parser = argparse.ArgumentParser(description="Index data")
parser.add_argument("--host_ip", type=str, default="localhost", help="Host IP")
parser.add_argument("--port", type=int, default=8889, help="Port")
parser.add_argument("--request_type", type=str, default="chat_completion", help="Test type")
args = parser.parse_args()
print(args)
host_ip = args.host_ip
port = args.port
url = "http://{host_ip}:{port}/v1/retrievaltool".format(host_ip=host_ip, port=port)
response = search_knowledge_base("OPEA", url, request_type=args.request_type)
print(response)
if __name__ == "__main__":
main()

View File

@@ -19,14 +19,12 @@ function build_docker_images() {
if [ ! -d "GenAIComps" ] ; then
git clone https://github.com/opea-project/GenAIComps.git && cd GenAIComps && git checkout "${opea_branch:-"main"}" && cd ../
fi
if [ ! -d "tei-gaudi" ] ; then
git clone https://github.com/huggingface/tei-gaudi
fi
echo "Build all the images with --no-cache, check docker_image_build.log for details..."
docker compose -f build.yaml build --no-cache > ${LOG_PATH}/docker_image_build.log
docker pull redis/redis-stack:7.2.0-v9
docker pull ghcr.io/huggingface/tei-gaudi:latest
docker images && sleep 1s
}
@@ -66,7 +64,7 @@ function validate() {
}
function validate_megaservice() {
echo "Testing DataPrep Service"
echo "=========Ingest data=================="
local CONTENT=$(curl -X POST "http://${ip_address}:6007/v1/dataprep" \
-H "Content-Type: multipart/form-data" \
-F 'link_list=["https://opea.dev"]')
@@ -80,7 +78,7 @@ function validate_megaservice() {
fi
# Curl the Mega Service
echo "Testing retriever service"
echo "==============Testing retriever service: Text Request================="
local CONTENT=$(curl http://${ip_address}:8889/v1/retrievaltool -X POST -H "Content-Type: application/json" -d '{
"text": "Explain the OPEA project?"
}')
@@ -95,6 +93,21 @@ function validate_megaservice() {
docker logs doc-index-retriever-server | tee -a ${LOG_PATH}/doc-index-retriever-service-gaudi.log
exit 1
fi
echo "==============Testing retriever service: ChatCompletion Request================"
cd $WORKPATH/tests
local CONTENT=$(python test.py --host_ip ${ip_address} --request_type chat_completion)
local EXIT_CODE=$(validate "$CONTENT" "OPEA" "doc-index-retriever-service-gaudi")
echo "$EXIT_CODE"
local EXIT_CODE="${EXIT_CODE:0-1}"
echo "return value is $EXIT_CODE"
if [ "$EXIT_CODE" == "1" ]; then
docker logs tei-embedding-gaudi-server | tee -a ${LOG_PATH}/doc-index-retriever-service-gaudi.log
docker logs retriever-redis-server | tee -a ${LOG_PATH}/doc-index-retriever-service-gaudi.log
docker logs reranking-tei-server | tee -a ${LOG_PATH}/doc-index-retriever-service-gaudi.log
docker logs doc-index-retriever-server | tee -a ${LOG_PATH}/doc-index-retriever-service-gaudi.log
exit 1
fi
}
function stop_docker() {

View File

@@ -63,8 +63,8 @@ function validate() {
}
function validate_megaservice() {
echo "Testing DataPrep Service"
local CONTENT=$(curl -X POST "http://${ip_address}:6007/v1/dataprep" \
echo "===========Ingest data=================="
local CONTENT=$(http_proxy="" curl -X POST "http://${ip_address}:6007/v1/dataprep" \
-H "Content-Type: multipart/form-data" \
-F 'link_list=["https://opea.dev"]')
local EXIT_CODE=$(validate "$CONTENT" "Data preparation succeeded" "dataprep-redis-service-xeon")
@@ -77,16 +77,32 @@ function validate_megaservice() {
fi
# Curl the Mega Service
echo "Testing retriever service"
echo "================Testing retriever service: Default params================"
local CONTENT=$(curl http://${ip_address}:8889/v1/retrievaltool -X POST -H "Content-Type: application/json" -d '{
"text": "Explain the OPEA project?"
"messages": "Explain the OPEA project?"
}')
local EXIT_CODE=$(validate "$CONTENT" "OPEA" "doc-index-retriever-service-xeon")
echo "$EXIT_CODE"
local EXIT_CODE="${EXIT_CODE:0-1}"
echo "return value is $EXIT_CODE"
if [ "$EXIT_CODE" == "1" ]; then
docker logs tei-embedding-xeon-server | tee -a ${LOG_PATH}/doc-index-retriever-service-xeon.log
docker logs tei-embedding-server | tee -a ${LOG_PATH}/doc-index-retriever-service-xeon.log
docker logs retriever-redis-server | tee -a ${LOG_PATH}/doc-index-retriever-service-xeon.log
docker logs reranking-tei-server | tee -a ${LOG_PATH}/doc-index-retriever-service-xeon.log
docker logs doc-index-retriever-server | tee -a ${LOG_PATH}/doc-index-retriever-service-xeon.log
exit 1
fi
echo "================Testing retriever service: ChatCompletion Request================"
cd $WORKPATH/tests
local CONTENT=$(python test.py --host_ip ${ip_address} --request_type chat_completion)
local EXIT_CODE=$(validate "$CONTENT" "OPEA" "doc-index-retriever-service-xeon")
echo "$EXIT_CODE"
local EXIT_CODE="${EXIT_CODE:0-1}"
echo "return value is $EXIT_CODE"
if [ "$EXIT_CODE" == "1" ]; then
docker logs tei-embedding-server | tee -a ${LOG_PATH}/doc-index-retriever-service-xeon.log
docker logs retriever-redis-server | tee -a ${LOG_PATH}/doc-index-retriever-service-xeon.log
docker logs reranking-tei-server | tee -a ${LOG_PATH}/doc-index-retriever-service-xeon.log
docker logs doc-index-retriever-server | tee -a ${LOG_PATH}/doc-index-retriever-service-xeon.log

View File

@@ -21,7 +21,7 @@ Currently we support two ways of deploying Document Summarization services with
docker pull opea/docsum:latest
```
2. Start services using the docker images `built from source`: [Guide](./docker_compose)
2. Start services using the docker images `built from source`: [Guide](https://github.com/opea-project/GenAIExamples/tree/main/DocSum/docker_compose)
### Required Models
@@ -98,7 +98,7 @@ Refer to [Kubernetes deployment](./kubernetes/intel/README.md)
Install Helm (version >= 3.15) first. Refer to the [Helm Installation Guide](https://helm.sh/docs/intro/install/) for more information.
Refer to the [DocSum helm chart](https://github.com/opea-project/GenAIInfra/tree/main/helm-charts/docsum) for instructions on deploying DocSum into Kubernetes on Xeon & Gaudi.
Refer to the [DocSum helm chart](https://github.com/opea-project/GenAIInfra/tree/main/helm-charts/docsum/README.md) for instructions on deploying DocSum into Kubernetes on Xeon & Gaudi.
### Workflow of the deployed Document Summarization Service
@@ -143,7 +143,7 @@ Two ways of consuming Document Summarization Service:
## Troubleshooting
1. If you get errors like "Access Denied", [validate micro service](https://github.com/opea-project/GenAIExamples/tree/main/DocSum/docker_compose/intel/cpu/xeon#validate-microservices) first. A simple example:
1. If you get errors like "Access Denied", [validate micro service](https://github.com/opea-project/GenAIExamples/tree/main/DocSum/docker_compose/intel/cpu/xeon/README.md#validate-microservices) first. A simple example:
```bash
http_proxy=""

Some files were not shown because too many files have changed in this diff Show More