Enable CodeGen vLLM (#1636)
Signed-off-by: Wang, Xigui <xigui.wang@intel.com> Co-authored-by: pre-commit-ci[bot] <66853113+pre-commit-ci[bot]@users.noreply.github.com>
This commit is contained in:
@@ -1,6 +1,7 @@
|
|||||||
# Build MegaService of CodeGen on Xeon
|
# Build MegaService of CodeGen on Xeon
|
||||||
|
|
||||||
This document outlines the deployment process for a CodeGen application utilizing the [GenAIComps](https://github.com/opea-project/GenAIComps.git) microservice pipeline on Intel Xeon server. The steps include Docker images creation, container deployment via Docker Compose, and service execution to integrate microservices such as `llm`. We will publish the Docker images to Docker Hub soon, further simplifying the deployment process for this service.
|
This document outlines the deployment process for a CodeGen application utilizing the [GenAIComps](https://github.com/opea-project/GenAIComps.git) microservice pipeline on Intel Xeon server. The steps include Docker images creation, container deployment via Docker Compose, and service execution to integrate microservices such as `llm`. We will publish the Docker images to Docker Hub soon, further simplifying the deployment process for this service.
|
||||||
|
The default pipeline deploys with vLLM as the LLM serving component. It also provides options of using TGI backend for LLM microservice.
|
||||||
|
|
||||||
## 🚀 Create an AWS Xeon Instance
|
## 🚀 Create an AWS Xeon Instance
|
||||||
|
|
||||||
@@ -10,55 +11,6 @@ For detailed information about these instance types, you can refer to [m7i](http
|
|||||||
|
|
||||||
After launching your instance, you can connect to it using SSH (for Linux instances) or Remote Desktop Protocol (RDP) (for Windows instances). From there, you'll have full access to your Xeon server, allowing you to install, configure, and manage your applications as needed.
|
After launching your instance, you can connect to it using SSH (for Linux instances) or Remote Desktop Protocol (RDP) (for Windows instances). From there, you'll have full access to your Xeon server, allowing you to install, configure, and manage your applications as needed.
|
||||||
|
|
||||||
## 🚀 Download or Build Docker Images
|
|
||||||
|
|
||||||
Should the Docker image you seek not yet be available on Docker Hub, you can build the Docker image locally.
|
|
||||||
|
|
||||||
### 1. Build the LLM Docker Image
|
|
||||||
|
|
||||||
```bash
|
|
||||||
git clone https://github.com/opea-project/GenAIComps.git
|
|
||||||
cd GenAIComps
|
|
||||||
docker build -t opea/llm-textgen:latest --build-arg https_proxy=$https_proxy --build-arg http_proxy=$http_proxy -f comps/llms/src/text-generation/Dockerfile .
|
|
||||||
```
|
|
||||||
|
|
||||||
### 2. Build the MegaService Docker Image
|
|
||||||
|
|
||||||
To construct the Mega Service, we utilize the [GenAIComps](https://github.com/opea-project/GenAIComps.git) microservice pipeline within the `codegen.py` Python script. Build MegaService Docker image via the command below:
|
|
||||||
|
|
||||||
```bash
|
|
||||||
git clone https://github.com/opea-project/GenAIExamples
|
|
||||||
cd GenAIExamples/CodeGen
|
|
||||||
docker build -t opea/codegen:latest --build-arg https_proxy=$https_proxy --build-arg http_proxy=$http_proxy -f Dockerfile .
|
|
||||||
```
|
|
||||||
|
|
||||||
### 3. Build the UI Docker Image
|
|
||||||
|
|
||||||
Build the frontend Docker image via the command below:
|
|
||||||
|
|
||||||
```bash
|
|
||||||
cd GenAIExamples/CodeGen/ui
|
|
||||||
docker build -t opea/codegen-ui:latest --build-arg https_proxy=$https_proxy --build-arg http_proxy=$http_proxy -f ./docker/Dockerfile .
|
|
||||||
```
|
|
||||||
|
|
||||||
### 4. Build CodeGen React UI Docker Image (Optional)
|
|
||||||
|
|
||||||
Build react frontend Docker image via below command:
|
|
||||||
|
|
||||||
**Export the value of the public IP address of your Xeon server to the `host_ip` environment variable**
|
|
||||||
|
|
||||||
```bash
|
|
||||||
cd GenAIExamples/CodeGen/ui
|
|
||||||
docker build --no-cache -t opea/codegen-react-ui:latest --build-arg https_proxy=$https_proxy --build-arg http_proxy=$http_proxy -f ./docker/Dockerfile.react .
|
|
||||||
```
|
|
||||||
|
|
||||||
Then run the command `docker images`, you will have the following Docker Images:
|
|
||||||
|
|
||||||
- `opea/llm-textgen:latest`
|
|
||||||
- `opea/codegen:latest`
|
|
||||||
- `opea/codegen-ui:latest`
|
|
||||||
- `opea/codegen-react-ui:latest` (optional)
|
|
||||||
|
|
||||||
## 🚀 Start Microservices and MegaService
|
## 🚀 Start Microservices and MegaService
|
||||||
|
|
||||||
The CodeGen megaservice manages a single microservice called LLM within a Directed Acyclic Graph (DAG). In the diagram above, the LLM microservice is a language model microservice that generates code snippets based on the user's input query. The TGI service serves as a text generation interface, providing a RESTful API for the LLM microservice. The CodeGen Gateway acts as the entry point for the CodeGen application, invoking the Megaservice to generate code snippets in response to the user's input query.
|
The CodeGen megaservice manages a single microservice called LLM within a Directed Acyclic Graph (DAG). In the diagram above, the LLM microservice is a language model microservice that generates code snippets based on the user's input query. The TGI service serves as a text generation interface, providing a RESTful API for the LLM microservice. The CodeGen Gateway acts as the entry point for the CodeGen application, invoking the Megaservice to generate code snippets in response to the user's input query.
|
||||||
@@ -89,41 +41,56 @@ flowchart LR
|
|||||||
|
|
||||||
Since the `compose.yaml` will consume some environment variables, you need to setup them in advance as below.
|
Since the `compose.yaml` will consume some environment variables, you need to setup them in advance as below.
|
||||||
|
|
||||||
**Append the value of the public IP address to the no_proxy list**
|
1. set the host_ip and huggingface token
|
||||||
|
|
||||||
|
> Note:
|
||||||
|
> Please replace the `your_ip_address` with you external IP address, do not use `localhost`.
|
||||||
|
|
||||||
|
```bash
|
||||||
|
export host_ip=${your_ip_address}
|
||||||
|
export HUGGINGFACEHUB_API_TOKEN=you_huggingface_token
|
||||||
```
|
```
|
||||||
export your_no_proxy=${your_no_proxy},"External_Public_IP"
|
|
||||||
```
|
2. Set Netowork Proxy
|
||||||
|
|
||||||
|
**If you access public network through proxy, set the network proxy, otherwise, skip this step**
|
||||||
|
|
||||||
```bash
|
```bash
|
||||||
export no_proxy=${your_no_proxy}
|
export no_proxy=${your_no_proxy}
|
||||||
export http_proxy=${your_http_proxy}
|
export http_proxy=${your_http_proxy}
|
||||||
export https_proxy=${your_http_proxy}
|
export https_proxy=${your_https_proxy}
|
||||||
export LLM_MODEL_ID="Qwen/Qwen2.5-Coder-7B-Instruct"
|
|
||||||
export TGI_LLM_ENDPOINT="http://${host_ip}:8028"
|
|
||||||
export HUGGINGFACEHUB_API_TOKEN=${your_hf_api_token}
|
|
||||||
export MEGA_SERVICE_HOST_IP=${host_ip}
|
|
||||||
export LLM_SERVICE_HOST_IP=${host_ip}
|
|
||||||
export BACKEND_SERVICE_ENDPOINT="http://${host_ip}:7778/v1/codegen"
|
|
||||||
```
|
```
|
||||||
|
|
||||||
Note: Please replace the `host_ip` with you external IP address, do not use `localhost`.
|
|
||||||
|
|
||||||
### Start the Docker Containers for All Services
|
### Start the Docker Containers for All Services
|
||||||
|
|
||||||
|
CodeGen support TGI service and vLLM service, you can choose start either one of them.
|
||||||
|
|
||||||
|
Start CodeGen based on TGI service:
|
||||||
|
|
||||||
```bash
|
```bash
|
||||||
cd GenAIExamples/CodeGen/docker_compose/intel/cpu/xeon
|
cd GenAIExamples/CodeGen/docker_compose
|
||||||
docker compose up -d
|
source set_env.sh
|
||||||
|
cd intel/cpu/xeon
|
||||||
|
docker compose --profile codegen-xeon-tgi up -d
|
||||||
|
```
|
||||||
|
|
||||||
|
Start CodeGen based on vLLM service:
|
||||||
|
|
||||||
|
```bash
|
||||||
|
cd GenAIExamples/CodeGen/docker_compose
|
||||||
|
source set_env.sh
|
||||||
|
cd intel/cpu/xeon
|
||||||
|
docker compose --profile codegen-xeon-vllm up -d
|
||||||
```
|
```
|
||||||
|
|
||||||
### Validate the MicroServices and MegaService
|
### Validate the MicroServices and MegaService
|
||||||
|
|
||||||
1. TGI Service
|
1. LLM Service (for TGI, vLLM)
|
||||||
|
|
||||||
```bash
|
```bash
|
||||||
curl http://${host_ip}:8028/generate \
|
curl http://${host_ip}:8028/v1/chat/completions \
|
||||||
-X POST \
|
-X POST \
|
||||||
-d '{"inputs":"Implement a high-level API for a TODO list application. The API takes as input an operation request and updates the TODO list in place. If the request is invalid, raise an exception.","parameters":{"max_new_tokens":256, "do_sample": true}}' \
|
-d '{"model": "Qwen/Qwen2.5-Coder-7B-Instruct", "messages": [{"role": "user", "content": "Implement a high-level API for a TODO list application. The API takes as input an operation request and updates the TODO list in place. If the request is invalid, raise an exception."}], "max_tokens":32}' \
|
||||||
-H 'Content-Type: application/json'
|
-H 'Content-Type: application/json'
|
||||||
```
|
```
|
||||||
|
|
||||||
@@ -257,3 +224,52 @@ For example:
|
|||||||
- Ask question and get answer
|
- Ask question and get answer
|
||||||
|
|
||||||

|

|
||||||
|
|
||||||
|
## 🚀 Download or Build Docker Images
|
||||||
|
|
||||||
|
Should the Docker image you seek not yet be available on Docker Hub, you can build the Docker image locally.
|
||||||
|
|
||||||
|
### 1. Build the LLM Docker Image
|
||||||
|
|
||||||
|
```bash
|
||||||
|
git clone https://github.com/opea-project/GenAIComps.git
|
||||||
|
cd GenAIComps
|
||||||
|
docker build -t opea/llm-textgen:latest --build-arg https_proxy=$https_proxy --build-arg http_proxy=$http_proxy -f comps/llms/src/text-generation/Dockerfile .
|
||||||
|
```
|
||||||
|
|
||||||
|
### 2. Build the MegaService Docker Image
|
||||||
|
|
||||||
|
To construct the Mega Service, we utilize the [GenAIComps](https://github.com/opea-project/GenAIComps.git) microservice pipeline within the `codegen.py` Python script. Build MegaService Docker image via the command below:
|
||||||
|
|
||||||
|
```bash
|
||||||
|
git clone https://github.com/opea-project/GenAIExamples
|
||||||
|
cd GenAIExamples/CodeGen
|
||||||
|
docker build -t opea/codegen:latest --build-arg https_proxy=$https_proxy --build-arg http_proxy=$http_proxy -f Dockerfile .
|
||||||
|
```
|
||||||
|
|
||||||
|
### 3. Build the UI Docker Image
|
||||||
|
|
||||||
|
Build the frontend Docker image via the command below:
|
||||||
|
|
||||||
|
```bash
|
||||||
|
cd GenAIExamples/CodeGen/ui
|
||||||
|
docker build -t opea/codegen-ui:latest --build-arg https_proxy=$https_proxy --build-arg http_proxy=$http_proxy -f ./docker/Dockerfile .
|
||||||
|
```
|
||||||
|
|
||||||
|
### 4. Build CodeGen React UI Docker Image (Optional)
|
||||||
|
|
||||||
|
Build react frontend Docker image via below command:
|
||||||
|
|
||||||
|
**Export the value of the public IP address of your Xeon server to the `host_ip` environment variable**
|
||||||
|
|
||||||
|
```bash
|
||||||
|
cd GenAIExamples/CodeGen/ui
|
||||||
|
docker build --no-cache -t opea/codegen-react-ui:latest --build-arg https_proxy=$https_proxy --build-arg http_proxy=$http_proxy -f ./docker/Dockerfile.react .
|
||||||
|
```
|
||||||
|
|
||||||
|
Then run the command `docker images`, you will have the following Docker Images:
|
||||||
|
|
||||||
|
- `opea/llm-textgen:latest`
|
||||||
|
- `opea/codegen:latest`
|
||||||
|
- `opea/codegen-ui:latest`
|
||||||
|
- `opea/codegen-react-ui:latest` (optional)
|
||||||
|
|||||||
@@ -4,7 +4,9 @@
|
|||||||
services:
|
services:
|
||||||
tgi-service:
|
tgi-service:
|
||||||
image: ghcr.io/huggingface/text-generation-inference:2.4.0-intel-cpu
|
image: ghcr.io/huggingface/text-generation-inference:2.4.0-intel-cpu
|
||||||
container_name: tgi-service
|
container_name: tgi-server
|
||||||
|
profiles:
|
||||||
|
- codegen-xeon-tgi
|
||||||
ports:
|
ports:
|
||||||
- "8028:80"
|
- "8028:80"
|
||||||
volumes:
|
volumes:
|
||||||
@@ -22,28 +24,66 @@ services:
|
|||||||
timeout: 10s
|
timeout: 10s
|
||||||
retries: 100
|
retries: 100
|
||||||
command: --model-id ${LLM_MODEL_ID} --cuda-graphs 0
|
command: --model-id ${LLM_MODEL_ID} --cuda-graphs 0
|
||||||
llm:
|
vllm-service:
|
||||||
image: ${REGISTRY:-opea}/llm-textgen:${TAG:-latest}
|
image: ${REGISTRY:-opea}/vllm:${TAG:-latest}
|
||||||
container_name: llm-textgen-server
|
container_name: vllm-server
|
||||||
depends_on:
|
profiles:
|
||||||
tgi-service:
|
- codegen-xeon-vllm
|
||||||
condition: service_healthy
|
|
||||||
ports:
|
ports:
|
||||||
- "9000:9000"
|
- "8028:80"
|
||||||
ipc: host
|
volumes:
|
||||||
|
- "${MODEL_CACHE:-./data}:/root/.cache/huggingface/hub"
|
||||||
|
shm_size: 1g
|
||||||
environment:
|
environment:
|
||||||
no_proxy: ${no_proxy}
|
no_proxy: ${no_proxy}
|
||||||
http_proxy: ${http_proxy}
|
http_proxy: ${http_proxy}
|
||||||
https_proxy: ${https_proxy}
|
https_proxy: ${https_proxy}
|
||||||
LLM_ENDPOINT: ${TGI_LLM_ENDPOINT}
|
HF_TOKEN: ${HUGGINGFACEHUB_API_TOKEN}
|
||||||
|
host_ip: ${host_ip}
|
||||||
|
healthcheck:
|
||||||
|
test: ["CMD-SHELL", "curl -f http://$host_ip:8028/health || exit 1"]
|
||||||
|
interval: 10s
|
||||||
|
timeout: 10s
|
||||||
|
retries: 100
|
||||||
|
command: --model ${LLM_MODEL_ID} --host 0.0.0.0 --port 80
|
||||||
|
llm-base:
|
||||||
|
image: ${REGISTRY:-opea}/llm-textgen:${TAG:-latest}
|
||||||
|
container_name: llm-textgen-server
|
||||||
|
environment:
|
||||||
|
no_proxy: ${no_proxy}
|
||||||
|
http_proxy: ${http_proxy}
|
||||||
|
https_proxy: ${https_proxy}
|
||||||
|
LLM_ENDPOINT: ${LLM_ENDPOINT}
|
||||||
LLM_MODEL_ID: ${LLM_MODEL_ID}
|
LLM_MODEL_ID: ${LLM_MODEL_ID}
|
||||||
HUGGINGFACEHUB_API_TOKEN: ${HUGGINGFACEHUB_API_TOKEN}
|
HUGGINGFACEHUB_API_TOKEN: ${HUGGINGFACEHUB_API_TOKEN}
|
||||||
restart: unless-stopped
|
restart: unless-stopped
|
||||||
|
llm-tgi-service:
|
||||||
|
extends: llm-base
|
||||||
|
container_name: llm-codegen-tgi-server
|
||||||
|
profiles:
|
||||||
|
- codegen-xeon-tgi
|
||||||
|
ports:
|
||||||
|
- "9000:9000"
|
||||||
|
ipc: host
|
||||||
|
depends_on:
|
||||||
|
tgi-service:
|
||||||
|
condition: service_healthy
|
||||||
|
llm-vllm-service:
|
||||||
|
extends: llm-base
|
||||||
|
container_name: llm-codegen-vllm-server
|
||||||
|
profiles:
|
||||||
|
- codegen-xeon-vllm
|
||||||
|
ports:
|
||||||
|
- "9000:9000"
|
||||||
|
ipc: host
|
||||||
|
depends_on:
|
||||||
|
vllm-service:
|
||||||
|
condition: service_healthy
|
||||||
codegen-xeon-backend-server:
|
codegen-xeon-backend-server:
|
||||||
image: ${REGISTRY:-opea}/codegen:${TAG:-latest}
|
image: ${REGISTRY:-opea}/codegen:${TAG:-latest}
|
||||||
container_name: codegen-xeon-backend-server
|
container_name: codegen-xeon-backend-server
|
||||||
depends_on:
|
depends_on:
|
||||||
- llm
|
- llm-base
|
||||||
ports:
|
ports:
|
||||||
- "7778:7778"
|
- "7778:7778"
|
||||||
environment:
|
environment:
|
||||||
|
|||||||
@@ -2,54 +2,7 @@
|
|||||||
|
|
||||||
This document outlines the deployment process for a CodeGen application utilizing the [GenAIComps](https://github.com/opea-project/GenAIComps.git) microservice pipeline on Intel Gaudi2 server. The steps include Docker images creation, container deployment via Docker Compose, and service execution to integrate microservices such as `llm`. We will publish the Docker images to the Docker Hub soon, further simplifying the deployment process for this service.
|
This document outlines the deployment process for a CodeGen application utilizing the [GenAIComps](https://github.com/opea-project/GenAIComps.git) microservice pipeline on Intel Gaudi2 server. The steps include Docker images creation, container deployment via Docker Compose, and service execution to integrate microservices such as `llm`. We will publish the Docker images to the Docker Hub soon, further simplifying the deployment process for this service.
|
||||||
|
|
||||||
## 🚀 Build Docker Images
|
The default pipeline deploys with vLLM as the LLM serving component. It also provides options of using TGI backend for LLM microservice.
|
||||||
|
|
||||||
First of all, you need to build the Docker images locally. This step can be ignored after the Docker images published to the Docker Hub.
|
|
||||||
|
|
||||||
### 1. Build the LLM Docker Image
|
|
||||||
|
|
||||||
```bash
|
|
||||||
git clone https://github.com/opea-project/GenAIComps.git
|
|
||||||
cd GenAIComps
|
|
||||||
docker build -t opea/llm-textgen:latest --build-arg https_proxy=$https_proxy --build-arg http_proxy=$http_proxy -f comps/llms/src/text-generation/Dockerfile .
|
|
||||||
```
|
|
||||||
|
|
||||||
### 2. Build the MegaService Docker Image
|
|
||||||
|
|
||||||
To construct the Mega Service, we utilize the [GenAIComps](https://github.com/opea-project/GenAIComps.git) microservice pipeline within the `codegen.py` Python script. Build the MegaService Docker image via the command below:
|
|
||||||
|
|
||||||
```bash
|
|
||||||
git clone https://github.com/opea-project/GenAIExamples
|
|
||||||
cd GenAIExamples/CodeGen
|
|
||||||
docker build -t opea/codegen:latest --build-arg https_proxy=$https_proxy --build-arg http_proxy=$http_proxy -f Dockerfile .
|
|
||||||
```
|
|
||||||
|
|
||||||
### 3. Build the UI Docker Image
|
|
||||||
|
|
||||||
Construct the frontend Docker image via the command below:
|
|
||||||
|
|
||||||
```bash
|
|
||||||
cd GenAIExamples/CodeGen/ui
|
|
||||||
docker build -t opea/codegen-ui:latest --build-arg https_proxy=$https_proxy --build-arg http_proxy=$http_proxy -f ./docker/Dockerfile .
|
|
||||||
```
|
|
||||||
|
|
||||||
### 4. Build CodeGen React UI Docker Image (Optional)
|
|
||||||
|
|
||||||
Build react frontend Docker image via below command:
|
|
||||||
|
|
||||||
**Export the value of the public IP address of your Xeon server to the `host_ip` environment variable**
|
|
||||||
|
|
||||||
```bash
|
|
||||||
cd GenAIExamples/CodeGen/ui
|
|
||||||
docker build --no-cache -t opea/codegen-react-ui:latest --build-arg https_proxy=$https_proxy --build-arg http_proxy=$http_proxy -f ./docker/Dockerfile.react .
|
|
||||||
```
|
|
||||||
|
|
||||||
Then run the command `docker images`, you will have the following Docker images:
|
|
||||||
|
|
||||||
- `opea/llm-textgen:latest`
|
|
||||||
- `opea/codegen:latest`
|
|
||||||
- `opea/codegen-ui:latest`
|
|
||||||
- `opea/codegen-react-ui:latest`
|
|
||||||
|
|
||||||
## 🚀 Start MicroServices and MegaService
|
## 🚀 Start MicroServices and MegaService
|
||||||
|
|
||||||
@@ -81,36 +34,56 @@ flowchart LR
|
|||||||
|
|
||||||
Since the `compose.yaml` will consume some environment variables, you need to setup them in advance as below.
|
Since the `compose.yaml` will consume some environment variables, you need to setup them in advance as below.
|
||||||
|
|
||||||
|
1. set the host_ip and huggingface token
|
||||||
|
|
||||||
|
> [!NOTE]
|
||||||
|
> Please replace the `your_ip_address` with you external IP address, do not use `localhost`.
|
||||||
|
|
||||||
|
```bash
|
||||||
|
export host_ip=${your_ip_address}
|
||||||
|
export HUGGINGFACEHUB_API_TOKEN=you_huggingface_token
|
||||||
|
```
|
||||||
|
|
||||||
|
2. Set Netowork Proxy
|
||||||
|
|
||||||
|
**If you access public network through proxy, set the network proxy, otherwise, skip this step**
|
||||||
|
|
||||||
```bash
|
```bash
|
||||||
export no_proxy=${your_no_proxy}
|
export no_proxy=${your_no_proxy}
|
||||||
export http_proxy=${your_http_proxy}
|
export http_proxy=${your_http_proxy}
|
||||||
export https_proxy=${your_http_proxy}
|
export https_proxy=${your_https_proxy}
|
||||||
export LLM_MODEL_ID="Qwen/Qwen2.5-Coder-7B-Instruct"
|
|
||||||
export TGI_LLM_ENDPOINT="http://${host_ip}:8028"
|
|
||||||
export HUGGINGFACEHUB_API_TOKEN=${your_hf_api_token}
|
|
||||||
export MEGA_SERVICE_HOST_IP=${host_ip}
|
|
||||||
export LLM_SERVICE_HOST_IP=${host_ip}
|
|
||||||
export BACKEND_SERVICE_ENDPOINT="http://${host_ip}:7778/v1/codegen"
|
|
||||||
```
|
```
|
||||||
|
|
||||||
> [!NOTE]
|
|
||||||
> Please replace the `host_ip` with you external IP address, do not use `localhost`.
|
|
||||||
|
|
||||||
### Start the Docker Containers for All Services
|
### Start the Docker Containers for All Services
|
||||||
|
|
||||||
|
CodeGen support TGI service and vLLM service, you can choose start either one of them.
|
||||||
|
|
||||||
|
Start CodeGen based on TGI service:
|
||||||
|
|
||||||
```bash
|
```bash
|
||||||
cd GenAIExamples/CodeGen/docker_compose/intel/hpu/gaudi
|
cd GenAIExamples/CodeGen/docker_compose
|
||||||
docker compose up -d
|
source set_env.sh
|
||||||
|
cd intel/hpu/gaudi
|
||||||
|
docker compose --profile codegen-gaudi-tgi up -d
|
||||||
|
```
|
||||||
|
|
||||||
|
Start CodeGen based on vLLM service:
|
||||||
|
|
||||||
|
```bash
|
||||||
|
cd GenAIExamples/CodeGen/docker_compose
|
||||||
|
source set_env.sh
|
||||||
|
cd intel/hpu/gaudi
|
||||||
|
docker compose --profile codegen-gaudi-vllm up -d
|
||||||
```
|
```
|
||||||
|
|
||||||
### Validate the MicroServices and MegaService
|
### Validate the MicroServices and MegaService
|
||||||
|
|
||||||
1. TGI Service
|
1. LLM Service (for TGI, vLLM)
|
||||||
|
|
||||||
```bash
|
```bash
|
||||||
curl http://${host_ip}:8028/generate \
|
curl http://${host_ip}:8028/v1/chat/completions \
|
||||||
-X POST \
|
-X POST \
|
||||||
-d '{"inputs":"Implement a high-level API for a TODO list application. The API takes as input an operation request and updates the TODO list in place. If the request is invalid, raise an exception.","parameters":{"max_new_tokens":256, "do_sample": true}}' \
|
-d '{"model": "Qwen/Qwen2.5-Coder-7B-Instruct", "messages": [{"role": "user", "content": "Implement a high-level API for a TODO list application. The API takes as input an operation request and updates the TODO list in place. If the request is invalid, raise an exception."}], "max_tokens":32}' \
|
||||||
-H 'Content-Type: application/json'
|
-H 'Content-Type: application/json'
|
||||||
```
|
```
|
||||||
|
|
||||||
@@ -240,3 +213,52 @@ For example:
|
|||||||
- Ask question and get answer
|
- Ask question and get answer
|
||||||
|
|
||||||

|

|
||||||
|
|
||||||
|
## 🚀 Build Docker Images
|
||||||
|
|
||||||
|
First of all, you need to build the Docker images locally. This step can be ignored after the Docker images published to the Docker Hub.
|
||||||
|
|
||||||
|
### 1. Build the LLM Docker Image
|
||||||
|
|
||||||
|
```bash
|
||||||
|
git clone https://github.com/opea-project/GenAIComps.git
|
||||||
|
cd GenAIComps
|
||||||
|
docker build -t opea/llm-textgen:latest --build-arg https_proxy=$https_proxy --build-arg http_proxy=$http_proxy -f comps/llms/src/text-generation/Dockerfile .
|
||||||
|
```
|
||||||
|
|
||||||
|
### 2. Build the MegaService Docker Image
|
||||||
|
|
||||||
|
To construct the Mega Service, we utilize the [GenAIComps](https://github.com/opea-project/GenAIComps.git) microservice pipeline within the `codegen.py` Python script. Build the MegaService Docker image via the command below:
|
||||||
|
|
||||||
|
```bash
|
||||||
|
git clone https://github.com/opea-project/GenAIExamples
|
||||||
|
cd GenAIExamples/CodeGen
|
||||||
|
docker build -t opea/codegen:latest --build-arg https_proxy=$https_proxy --build-arg http_proxy=$http_proxy -f Dockerfile .
|
||||||
|
```
|
||||||
|
|
||||||
|
### 3. Build the UI Docker Image
|
||||||
|
|
||||||
|
Construct the frontend Docker image via the command below:
|
||||||
|
|
||||||
|
```bash
|
||||||
|
cd GenAIExamples/CodeGen/ui
|
||||||
|
docker build -t opea/codegen-ui:latest --build-arg https_proxy=$https_proxy --build-arg http_proxy=$http_proxy -f ./docker/Dockerfile .
|
||||||
|
```
|
||||||
|
|
||||||
|
### 4. Build CodeGen React UI Docker Image (Optional)
|
||||||
|
|
||||||
|
Build react frontend Docker image via below command:
|
||||||
|
|
||||||
|
**Export the value of the public IP address of your Xeon server to the `host_ip` environment variable**
|
||||||
|
|
||||||
|
```bash
|
||||||
|
cd GenAIExamples/CodeGen/ui
|
||||||
|
docker build --no-cache -t opea/codegen-react-ui:latest --build-arg https_proxy=$https_proxy --build-arg http_proxy=$http_proxy -f ./docker/Dockerfile.react .
|
||||||
|
```
|
||||||
|
|
||||||
|
Then run the command `docker images`, you will have the following Docker images:
|
||||||
|
|
||||||
|
- `opea/llm-textgen:latest`
|
||||||
|
- `opea/codegen:latest`
|
||||||
|
- `opea/codegen-ui:latest`
|
||||||
|
- `opea/codegen-react-ui:latest`
|
||||||
|
|||||||
@@ -5,6 +5,8 @@ services:
|
|||||||
tgi-service:
|
tgi-service:
|
||||||
image: ghcr.io/huggingface/tgi-gaudi:2.3.1
|
image: ghcr.io/huggingface/tgi-gaudi:2.3.1
|
||||||
container_name: tgi-gaudi-server
|
container_name: tgi-gaudi-server
|
||||||
|
profiles:
|
||||||
|
- codegen-gaudi-tgi
|
||||||
ports:
|
ports:
|
||||||
- "8028:80"
|
- "8028:80"
|
||||||
volumes:
|
volumes:
|
||||||
@@ -30,28 +32,74 @@ services:
|
|||||||
- SYS_NICE
|
- SYS_NICE
|
||||||
ipc: host
|
ipc: host
|
||||||
command: --model-id ${LLM_MODEL_ID} --max-input-length 1024 --max-total-tokens 2048
|
command: --model-id ${LLM_MODEL_ID} --max-input-length 1024 --max-total-tokens 2048
|
||||||
llm:
|
vllm-service:
|
||||||
image: ${REGISTRY:-opea}/llm-textgen:${TAG:-latest}
|
image: ${REGISTRY:-opea}/vllm-gaudi:${TAG:-latest}
|
||||||
container_name: llm-textgen-gaudi-server
|
container_name: vllm-gaudi-server
|
||||||
depends_on:
|
profiles:
|
||||||
tgi-service:
|
- codegen-gaudi-vllm
|
||||||
condition: service_healthy
|
|
||||||
ports:
|
ports:
|
||||||
- "9000:9000"
|
- "8028:80"
|
||||||
ipc: host
|
volumes:
|
||||||
|
- "${MODEL_CACHE:-./data}:/root/.cache/huggingface/hub"
|
||||||
|
shm_size: 1g
|
||||||
environment:
|
environment:
|
||||||
no_proxy: ${no_proxy}
|
no_proxy: ${no_proxy}
|
||||||
http_proxy: ${http_proxy}
|
http_proxy: ${http_proxy}
|
||||||
https_proxy: ${https_proxy}
|
https_proxy: ${https_proxy}
|
||||||
LLM_ENDPOINT: ${TGI_LLM_ENDPOINT}
|
HF_TOKEN: ${HUGGINGFACEHUB_API_TOKEN}
|
||||||
|
HABANA_VISIBLE_DEVICES: all
|
||||||
|
OMPI_MCA_btl_vader_single_copy_mechanism: none
|
||||||
|
VLLM_SKIP_WARMUP: ${VLLM_SKIP_WARMUP:-false}
|
||||||
|
NUM_CARDS: ${NUM_CARDS:-1}
|
||||||
|
VLLM_TORCH_PROFILER_DIR: "/mnt"
|
||||||
|
healthcheck:
|
||||||
|
test: ["CMD-SHELL", "curl -f http://$host_ip:8028/health || exit 1"]
|
||||||
|
interval: 10s
|
||||||
|
timeout: 10s
|
||||||
|
retries: 100
|
||||||
|
runtime: habana
|
||||||
|
cap_add:
|
||||||
|
- SYS_NICE
|
||||||
|
ipc: host
|
||||||
|
command: --model ${LLM_MODEL_ID} --tensor-parallel-size ${NUM_CARDS} --host 0.0.0.0 --port 80 --block-size 128 --max-num-seqs 256
|
||||||
|
llm-base:
|
||||||
|
image: ${REGISTRY:-opea}/llm-textgen:${TAG:-latest}
|
||||||
|
container_name: llm-textgen-gaudi-server
|
||||||
|
environment:
|
||||||
|
no_proxy: ${no_proxy}
|
||||||
|
http_proxy: ${http_proxy}
|
||||||
|
https_proxy: ${https_proxy}
|
||||||
|
LLM_ENDPOINT: ${LLM_ENDPOINT}
|
||||||
LLM_MODEL_ID: ${LLM_MODEL_ID}
|
LLM_MODEL_ID: ${LLM_MODEL_ID}
|
||||||
HUGGINGFACEHUB_API_TOKEN: ${HUGGINGFACEHUB_API_TOKEN}
|
HUGGINGFACEHUB_API_TOKEN: ${HUGGINGFACEHUB_API_TOKEN}
|
||||||
restart: unless-stopped
|
restart: unless-stopped
|
||||||
|
llm-tgi-service:
|
||||||
|
extends: llm-base
|
||||||
|
container_name: llm-codegen-tgi-gaudi-server
|
||||||
|
profiles:
|
||||||
|
- codegen-gaudi-tgi
|
||||||
|
ports:
|
||||||
|
- "9000:9000"
|
||||||
|
ipc: host
|
||||||
|
depends_on:
|
||||||
|
tgi-service:
|
||||||
|
condition: service_healthy
|
||||||
|
llm-vllm-service:
|
||||||
|
extends: llm-base
|
||||||
|
container_name: llm-codegen-gaudi-vllm-server
|
||||||
|
profiles:
|
||||||
|
- codegen-gaudi-vllm
|
||||||
|
ports:
|
||||||
|
- "9000:9000"
|
||||||
|
ipc: host
|
||||||
|
depends_on:
|
||||||
|
vllm-service:
|
||||||
|
condition: service_healthy
|
||||||
codegen-gaudi-backend-server:
|
codegen-gaudi-backend-server:
|
||||||
image: ${REGISTRY:-opea}/codegen:${TAG:-latest}
|
image: ${REGISTRY:-opea}/codegen:${TAG:-latest}
|
||||||
container_name: codegen-gaudi-backend-server
|
container_name: codegen-gaudi-backend-server
|
||||||
depends_on:
|
depends_on:
|
||||||
- llm
|
- llm-base
|
||||||
ports:
|
ports:
|
||||||
- "7778:7778"
|
- "7778:7778"
|
||||||
environment:
|
environment:
|
||||||
|
|||||||
@@ -6,9 +6,21 @@ pushd "../../" > /dev/null
|
|||||||
source .set_env.sh
|
source .set_env.sh
|
||||||
popd > /dev/null
|
popd > /dev/null
|
||||||
|
|
||||||
|
export host_ip=$(hostname -I | awk '{print $1}')
|
||||||
|
|
||||||
|
if [ -z "${HUGGINGFACEHUB_API_TOKEN}" ]; then
|
||||||
|
echo "Error: HUGGINGFACEHUB_API_TOKEN is not set. Please set HUGGINGFACEHUB_API_TOKEN"
|
||||||
|
fi
|
||||||
|
|
||||||
|
if [ -z "${host_ip}" ]; then
|
||||||
|
echo "Error: host_ip is not set. Please set host_ip first."
|
||||||
|
fi
|
||||||
|
|
||||||
|
export no_proxy=${no_proxy},${host_ip}
|
||||||
|
|
||||||
export LLM_MODEL_ID="Qwen/Qwen2.5-Coder-7B-Instruct"
|
export LLM_MODEL_ID="Qwen/Qwen2.5-Coder-7B-Instruct"
|
||||||
export TGI_LLM_ENDPOINT="http://${host_ip}:8028"
|
export LLM_ENDPOINT="http://${host_ip}:8028"
|
||||||
export MEGA_SERVICE_HOST_IP=${host_ip}
|
export MEGA_SERVICE_HOST_IP=${host_ip}
|
||||||
export LLM_SERVICE_HOST_IP=${host_ip}
|
export LLM_SERVICE_HOST_IP=${host_ip}
|
||||||
export BACKEND_SERVICE_ENDPOINT="http://${host_ip}:7778/v1/codegen"
|
export BACKEND_SERVICE_ENDPOINT="http://${host_ip}:7778/v1/codegen"
|
||||||
|
export MODEL_CACHE="./data"
|
||||||
|
|||||||
@@ -29,3 +29,15 @@ services:
|
|||||||
dockerfile: comps/llms/src/text-generation/Dockerfile
|
dockerfile: comps/llms/src/text-generation/Dockerfile
|
||||||
extends: codegen
|
extends: codegen
|
||||||
image: ${REGISTRY:-opea}/llm-textgen:${TAG:-latest}
|
image: ${REGISTRY:-opea}/llm-textgen:${TAG:-latest}
|
||||||
|
vllm:
|
||||||
|
build:
|
||||||
|
context: vllm
|
||||||
|
dockerfile: Dockerfile.cpu
|
||||||
|
extends: codegen
|
||||||
|
image: ${REGISTRY:-opea}/vllm:${TAG:-latest}
|
||||||
|
vllm-gaudi:
|
||||||
|
build:
|
||||||
|
context: vllm-fork
|
||||||
|
dockerfile: Dockerfile.hpu
|
||||||
|
extends: codegen
|
||||||
|
image: ${REGISTRY:-opea}/vllm-gaudi:${TAG:-latest}
|
||||||
|
|||||||
@@ -30,34 +30,44 @@ function build_docker_images() {
|
|||||||
|
|
||||||
cd $WORKPATH/docker_image_build
|
cd $WORKPATH/docker_image_build
|
||||||
git clone --depth 1 --branch ${opea_branch} https://github.com/opea-project/GenAIComps.git
|
git clone --depth 1 --branch ${opea_branch} https://github.com/opea-project/GenAIComps.git
|
||||||
|
# Download Gaudi vllm of latest tag
|
||||||
|
git clone https://github.com/HabanaAI/vllm-fork.git && cd vllm-fork
|
||||||
|
VLLM_VER=$(git describe --tags "$(git rev-list --tags --max-count=1)")
|
||||||
|
echo "Check out vLLM tag ${VLLM_VER}"
|
||||||
|
git checkout ${VLLM_VER} &> /dev/null && cd ../
|
||||||
|
|
||||||
echo "Build all the images with --no-cache, check docker_image_build.log for details..."
|
echo "Build all the images with --no-cache, check docker_image_build.log for details..."
|
||||||
service_list="codegen codegen-ui llm-textgen"
|
service_list="codegen codegen-ui llm-textgen vllm-gaudi"
|
||||||
docker compose -f build.yaml build ${service_list} --no-cache > ${LOG_PATH}/docker_image_build.log
|
docker compose -f build.yaml build ${service_list} --no-cache > ${LOG_PATH}/docker_image_build.log
|
||||||
|
|
||||||
docker pull ghcr.io/huggingface/tgi-gaudi:2.0.6
|
|
||||||
docker images && sleep 1s
|
docker images && sleep 1s
|
||||||
}
|
}
|
||||||
|
|
||||||
function start_services() {
|
function start_services() {
|
||||||
|
local compose_profile="$1"
|
||||||
|
local llm_container_name="$2"
|
||||||
|
|
||||||
cd $WORKPATH/docker_compose/intel/hpu/gaudi
|
cd $WORKPATH/docker_compose/intel/hpu/gaudi
|
||||||
export LLM_MODEL_ID="Intel/neural-chat-7b-v3-3"
|
export http_proxy=${http_proxy}
|
||||||
export TGI_LLM_ENDPOINT="http://${ip_address}:8028"
|
export https_proxy=${https_proxy}
|
||||||
|
export LLM_MODEL_ID="Qwen/Qwen2.5-Coder-7B-Instruct"
|
||||||
|
export LLM_ENDPOINT="http://${ip_address}:8028"
|
||||||
export HUGGINGFACEHUB_API_TOKEN=${HUGGINGFACEHUB_API_TOKEN}
|
export HUGGINGFACEHUB_API_TOKEN=${HUGGINGFACEHUB_API_TOKEN}
|
||||||
export MEGA_SERVICE_HOST_IP=${ip_address}
|
export MEGA_SERVICE_HOST_IP=${ip_address}
|
||||||
export LLM_SERVICE_HOST_IP=${ip_address}
|
export LLM_SERVICE_HOST_IP=${ip_address}
|
||||||
export BACKEND_SERVICE_ENDPOINT="http://${ip_address}:7778/v1/codegen"
|
export BACKEND_SERVICE_ENDPOINT="http://${ip_address}:7778/v1/codegen"
|
||||||
|
export NUM_CARDS=1
|
||||||
export host_ip=${ip_address}
|
export host_ip=${ip_address}
|
||||||
|
|
||||||
sed -i "s/backend_address/$ip_address/g" $WORKPATH/ui/svelte/.env
|
sed -i "s/backend_address/$ip_address/g" $WORKPATH/ui/svelte/.env
|
||||||
|
|
||||||
# Start Docker Containers
|
# Start Docker Containers
|
||||||
docker compose up -d > ${LOG_PATH}/start_services_with_compose.log
|
docker compose --profile ${compose_profile} up -d | tee ${LOG_PATH}/start_services_with_compose.log
|
||||||
|
|
||||||
n=0
|
n=0
|
||||||
until [[ "$n" -ge 100 ]]; do
|
until [[ "$n" -ge 100 ]]; do
|
||||||
docker logs tgi-gaudi-server > ${LOG_PATH}/tgi_service_start.log
|
docker logs ${llm_container_name} > ${LOG_PATH}/llm_service_start.log 2>&1
|
||||||
if grep -q Connected ${LOG_PATH}/tgi_service_start.log; then
|
if grep -E "Connected|complete" ${LOG_PATH}/llm_service_start.log; then
|
||||||
break
|
break
|
||||||
fi
|
fi
|
||||||
sleep 5s
|
sleep 5s
|
||||||
@@ -94,13 +104,15 @@ function validate_services() {
|
|||||||
}
|
}
|
||||||
|
|
||||||
function validate_microservices() {
|
function validate_microservices() {
|
||||||
|
local llm_container_name="$1"
|
||||||
|
|
||||||
# tgi for llm service
|
# tgi for llm service
|
||||||
validate_services \
|
validate_services \
|
||||||
"${ip_address}:8028/generate" \
|
"${ip_address}:8028/v1/chat/completions" \
|
||||||
"generated_text" \
|
"completion_tokens" \
|
||||||
"tgi-llm" \
|
"llm-service" \
|
||||||
"tgi-gaudi-server" \
|
"${llm_container_name}" \
|
||||||
'{"inputs":"def print_hello_world():","parameters":{"max_new_tokens":256, "do_sample": true}}'
|
'{"model": "Qwen/Qwen2.5-Coder-7B-Instruct", "messages": [{"role": "user", "content": "def print_hello_world():"}], "max_tokens": 256}'
|
||||||
|
|
||||||
# llm microservice
|
# llm microservice
|
||||||
validate_services \
|
validate_services \
|
||||||
@@ -152,24 +164,50 @@ function validate_frontend() {
|
|||||||
}
|
}
|
||||||
|
|
||||||
function stop_docker() {
|
function stop_docker() {
|
||||||
|
local docker_profile="$1"
|
||||||
|
|
||||||
cd $WORKPATH/docker_compose/intel/hpu/gaudi
|
cd $WORKPATH/docker_compose/intel/hpu/gaudi
|
||||||
docker compose stop && docker compose rm -f
|
docker compose --profile ${docker_profile} down
|
||||||
}
|
}
|
||||||
|
|
||||||
function main() {
|
function main() {
|
||||||
|
# all docker docker compose profiles for XEON Platform
|
||||||
|
docker_compose_profiles=("codegen-gaudi-vllm" "codegen-gaudi-tgi")
|
||||||
|
docker_llm_container_names=("vllm-gaudi-server" "tgi-gaudi-server")
|
||||||
|
|
||||||
stop_docker
|
# get number of profiels and container
|
||||||
|
len_profiles=${#docker_compose_profiles[@]}
|
||||||
|
len_containers=${#docker_llm_container_names[@]}
|
||||||
|
|
||||||
|
# number of profiels and docker container names must be matched
|
||||||
|
if [ ${len_profiles} -ne ${len_containers} ]; then
|
||||||
|
echo "Error: number of profiles ${len_profiles} and container names ${len_containers} mismatched"
|
||||||
|
exit 1
|
||||||
|
fi
|
||||||
|
|
||||||
|
# stop_docker, stop all profiles
|
||||||
|
for ((i = 0; i < len_profiles; i++)); do
|
||||||
|
stop_docker "${docker_compose_profiles[${i}]}"
|
||||||
|
done
|
||||||
|
|
||||||
|
# build docker images
|
||||||
if [[ "$IMAGE_REPO" == "opea" ]]; then build_docker_images; fi
|
if [[ "$IMAGE_REPO" == "opea" ]]; then build_docker_images; fi
|
||||||
start_services
|
|
||||||
|
|
||||||
validate_microservices
|
# loop all profiles
|
||||||
|
for ((i = 0; i < len_profiles; i++)); do
|
||||||
|
echo "Process [${i}]: ${docker_compose_profiles[$i]}, ${docker_llm_container_names[${i}]}"
|
||||||
|
start_services "${docker_compose_profiles[${i}]}" "${docker_llm_container_names[${i}]}"
|
||||||
|
docker ps -a
|
||||||
|
|
||||||
|
validate_microservices "${docker_llm_container_names[${i}]}"
|
||||||
validate_megaservice
|
validate_megaservice
|
||||||
validate_frontend
|
validate_frontend
|
||||||
|
|
||||||
stop_docker
|
stop_docker "${docker_compose_profiles[${i}]}"
|
||||||
echo y | docker system prune
|
sleep 5s
|
||||||
|
done
|
||||||
|
|
||||||
|
echo y | docker system prune
|
||||||
}
|
}
|
||||||
|
|
||||||
main
|
main
|
||||||
|
|||||||
@@ -31,8 +31,14 @@ function build_docker_images() {
|
|||||||
cd $WORKPATH/docker_image_build
|
cd $WORKPATH/docker_image_build
|
||||||
git clone --depth 1 --branch ${opea_branch} https://github.com/opea-project/GenAIComps.git
|
git clone --depth 1 --branch ${opea_branch} https://github.com/opea-project/GenAIComps.git
|
||||||
|
|
||||||
|
git clone https://github.com/vllm-project/vllm.git && cd vllm
|
||||||
|
VLLM_VER="$(git describe --tags "$(git rev-list --tags --max-count=1)" )"
|
||||||
|
echo "Check out vLLM tag ${VLLM_VER}"
|
||||||
|
git checkout ${VLLM_VER} &> /dev/null
|
||||||
|
cd ../
|
||||||
|
|
||||||
echo "Build all the images with --no-cache, check docker_image_build.log for details..."
|
echo "Build all the images with --no-cache, check docker_image_build.log for details..."
|
||||||
service_list="codegen codegen-ui llm-textgen"
|
service_list="codegen codegen-ui llm-textgen vllm"
|
||||||
docker compose -f build.yaml build ${service_list} --no-cache > ${LOG_PATH}/docker_image_build.log
|
docker compose -f build.yaml build ${service_list} --no-cache > ${LOG_PATH}/docker_image_build.log
|
||||||
|
|
||||||
docker pull ghcr.io/huggingface/text-generation-inference:2.4.0-intel-cpu
|
docker pull ghcr.io/huggingface/text-generation-inference:2.4.0-intel-cpu
|
||||||
@@ -40,10 +46,13 @@ function build_docker_images() {
|
|||||||
}
|
}
|
||||||
|
|
||||||
function start_services() {
|
function start_services() {
|
||||||
|
local compose_profile="$1"
|
||||||
|
local llm_container_name="$2"
|
||||||
|
|
||||||
cd $WORKPATH/docker_compose/intel/cpu/xeon/
|
cd $WORKPATH/docker_compose/intel/cpu/xeon/
|
||||||
|
|
||||||
export LLM_MODEL_ID="Intel/neural-chat-7b-v3-3"
|
export LLM_MODEL_ID="Qwen/Qwen2.5-Coder-7B-Instruct"
|
||||||
export TGI_LLM_ENDPOINT="http://${ip_address}:8028"
|
export LLM_ENDPOINT="http://${ip_address}:8028"
|
||||||
export HUGGINGFACEHUB_API_TOKEN=${HUGGINGFACEHUB_API_TOKEN}
|
export HUGGINGFACEHUB_API_TOKEN=${HUGGINGFACEHUB_API_TOKEN}
|
||||||
export MEGA_SERVICE_HOST_IP=${ip_address}
|
export MEGA_SERVICE_HOST_IP=${ip_address}
|
||||||
export LLM_SERVICE_HOST_IP=${ip_address}
|
export LLM_SERVICE_HOST_IP=${ip_address}
|
||||||
@@ -53,12 +62,12 @@ function start_services() {
|
|||||||
sed -i "s/backend_address/$ip_address/g" $WORKPATH/ui/svelte/.env
|
sed -i "s/backend_address/$ip_address/g" $WORKPATH/ui/svelte/.env
|
||||||
|
|
||||||
# Start Docker Containers
|
# Start Docker Containers
|
||||||
docker compose up -d > ${LOG_PATH}/start_services_with_compose.log
|
docker compose --profile ${compose_profile} up -d > ${LOG_PATH}/start_services_with_compose.log
|
||||||
|
|
||||||
n=0
|
n=0
|
||||||
until [[ "$n" -ge 100 ]]; do
|
until [[ "$n" -ge 100 ]]; do
|
||||||
docker logs tgi-service > ${LOG_PATH}/tgi_service_start.log
|
docker logs ${llm_container_name} > ${LOG_PATH}/llm_service_start.log 2>&1
|
||||||
if grep -q Connected ${LOG_PATH}/tgi_service_start.log; then
|
if grep -E "Connected|complete" ${LOG_PATH}/llm_service_start.log; then
|
||||||
break
|
break
|
||||||
fi
|
fi
|
||||||
sleep 5s
|
sleep 5s
|
||||||
@@ -95,13 +104,15 @@ function validate_services() {
|
|||||||
}
|
}
|
||||||
|
|
||||||
function validate_microservices() {
|
function validate_microservices() {
|
||||||
|
local llm_container_name="$1"
|
||||||
|
|
||||||
# tgi for llm service
|
# tgi for llm service
|
||||||
validate_services \
|
validate_services \
|
||||||
"${ip_address}:8028/generate" \
|
"${ip_address}:8028/v1/chat/completions" \
|
||||||
"generated_text" \
|
"completion_tokens" \
|
||||||
"tgi-llm" \
|
"llm-service" \
|
||||||
"tgi-service" \
|
"${llm_container_name}" \
|
||||||
'{"inputs":"def print_hello_world():","parameters":{"max_new_tokens":256, "do_sample": true}}'
|
'{"model": "Qwen/Qwen2.5-Coder-7B-Instruct", "messages": [{"role": "user", "content": "What is Deep Learning?"}], "max_tokens": 256}'
|
||||||
|
|
||||||
# llm microservice
|
# llm microservice
|
||||||
validate_services \
|
validate_services \
|
||||||
@@ -109,7 +120,7 @@ function validate_microservices() {
|
|||||||
"data: " \
|
"data: " \
|
||||||
"llm" \
|
"llm" \
|
||||||
"llm-textgen-server" \
|
"llm-textgen-server" \
|
||||||
'{"query":"def print_hello_world():"}'
|
'{"query":"def print_hello_world():", "max_tokens": 256}'
|
||||||
|
|
||||||
}
|
}
|
||||||
|
|
||||||
@@ -120,7 +131,7 @@ function validate_megaservice() {
|
|||||||
"print" \
|
"print" \
|
||||||
"mega-codegen" \
|
"mega-codegen" \
|
||||||
"codegen-xeon-backend-server" \
|
"codegen-xeon-backend-server" \
|
||||||
'{"messages": "def print_hello_world():"}'
|
'{"messages": "def print_hello_world():", "max_tokens": 256}'
|
||||||
|
|
||||||
}
|
}
|
||||||
|
|
||||||
@@ -154,24 +165,50 @@ function validate_frontend() {
|
|||||||
|
|
||||||
|
|
||||||
function stop_docker() {
|
function stop_docker() {
|
||||||
|
local docker_profile="$1"
|
||||||
|
|
||||||
cd $WORKPATH/docker_compose/intel/cpu/xeon/
|
cd $WORKPATH/docker_compose/intel/cpu/xeon/
|
||||||
docker compose stop && docker compose rm -f
|
docker compose --profile ${docker_profile} down
|
||||||
}
|
}
|
||||||
|
|
||||||
function main() {
|
function main() {
|
||||||
|
# all docker docker compose profiles for Xeon Platform
|
||||||
|
docker_compose_profiles=("codegen-xeon-tgi" "codegen-xeon-vllm")
|
||||||
|
docker_llm_container_names=("tgi-server" "vllm-server")
|
||||||
|
|
||||||
stop_docker
|
# get number of profiels and LLM docker container names
|
||||||
|
len_profiles=${#docker_compose_profiles[@]}
|
||||||
|
len_containers=${#docker_llm_container_names[@]}
|
||||||
|
|
||||||
|
# number of profiels and docker container names must be matched
|
||||||
|
if [ ${len_profiles} -ne ${len_containers} ]; then
|
||||||
|
echo "Error: number of profiles ${len_profiles} and container names ${len_containers} mismatched"
|
||||||
|
exit 1
|
||||||
|
fi
|
||||||
|
|
||||||
|
# stop_docker, stop all profiles
|
||||||
|
for ((i = 0; i < len_profiles; i++)); do
|
||||||
|
stop_docker "${docker_compose_profiles[${i}]}"
|
||||||
|
done
|
||||||
|
|
||||||
|
# build docker images
|
||||||
if [[ "$IMAGE_REPO" == "opea" ]]; then build_docker_images; fi
|
if [[ "$IMAGE_REPO" == "opea" ]]; then build_docker_images; fi
|
||||||
start_services
|
|
||||||
|
|
||||||
validate_microservices
|
# loop all profiles
|
||||||
|
for ((i = 0; i < len_profiles; i++)); do
|
||||||
|
echo "Process [${i}]: ${docker_compose_profiles[$i]}, ${docker_llm_container_names[${i}]}"
|
||||||
|
docker ps -a
|
||||||
|
start_services "${docker_compose_profiles[${i}]}" "${docker_llm_container_names[${i}]}"
|
||||||
|
|
||||||
|
validate_microservices "${docker_llm_container_names[${i}]}"
|
||||||
validate_megaservice
|
validate_megaservice
|
||||||
validate_frontend
|
validate_frontend
|
||||||
|
|
||||||
stop_docker
|
stop_docker "${docker_compose_profiles[${i}]}"
|
||||||
echo y | docker system prune
|
sleep 5s
|
||||||
|
done
|
||||||
|
|
||||||
|
echo y | docker system prune
|
||||||
}
|
}
|
||||||
|
|
||||||
main
|
main
|
||||||
|
|||||||
Reference in New Issue
Block a user