Signed-off-by: Mustafa <mustafa.cetin@intel.com>
Signed-off-by: Harsha Ramayanam <harsha.ramayanam@intel.com>
Co-authored-by: Harsha Ramayanam <harsha.ramayanam@intel.com>
Co-authored-by: pre-commit-ci[bot] <66853113+pre-commit-ci[bot]@users.noreply.github.com>
Co-authored-by: XinyaoWa <xinyao.wang@intel.com>
Co-authored-by: Abolfazl Shahbazi <12436063+ashahba@users.noreply.github.com>
Co-authored-by: chen, suyue <suyue.chen@intel.com>
This commit is contained in:
Mustafa
2024-11-18 01:15:42 -08:00
committed by GitHub
parent 2587179224
commit eb91d1f054
22 changed files with 1392 additions and 275 deletions

View File

@@ -1,47 +1,75 @@
# Build MegaService of Document Summarization on Gaudi
This document outlines the deployment process for a Document Summarization application utilizing the [GenAIComps](https://github.com/opea-project/GenAIComps.git) microservice pipeline on Intel Gaudi server. The steps include Docker image creation, container deployment via Docker Compose, and service execution to integrate microservices such as llm. We will publish the Docker images to Docker Hub, which will simplify the deployment process for this service.
This document outlines the deployment process for a Document Summarization application utilizing the [GenAIComps](https://github.com/opea-project/GenAIComps.git) microservice pipeline on Intel Gaudi server. The steps include Docker image creation, container deployment via Docker Compose, and service execution to integrate microservices such as `llm`. We will publish the Docker images to Docker Hub soon, which will simplify the deployment process for this service.
## 🚀 Build Docker Images
First of all, you need to build Docker Images locally. This step can be ignored once the Docker images are published to Docker hub.
### 1. Build MicroService Docker Image
### 1. Pull TGI Gaudi Image
As TGI Gaudi has been officially published as a Docker image, we simply need to pull it:
```bash
docker pull ghcr.io/huggingface/tgi-gaudi:2.0.6
```
### 2. Build LLM Image
First of all, you need to build Docker Images locally and install the python package of it.
```bash
git clone https://github.com/opea-project/GenAIComps.git
cd GenAIComps
docker build -t opea/llm-docsum-tgi:latest --build-arg https_proxy=$https_proxy --build-arg http_proxy=$http_proxy -f comps/llms/summarization/tgi/langchain/Dockerfile .
```
### 3. Build MegaService Docker Image
#### Audio to text Service
To construct the Mega Service, we utilize the [GenAIComps](https://github.com/opea-project/GenAIComps.git) microservice pipeline within the `docsum.py` Python script. Build the MegaService Docker image using the command below:
The Audio to text Service is another service for converting audio to text. Follow these steps to build and run the service:
```bash
docker build -t opea/dataprep-audio2text:latest --build-arg https_proxy=$https_proxy --build-arg http_proxy=$http_proxy -f comps/dataprep/multimedia2text/audio2text/Dockerfile .
```
#### Video to Audio Service
The Video to Audio Service extracts audio from video files. Follow these steps to build and run the service:
```bash
docker build -t opea/dataprep-video2audio:latest --build-arg https_proxy=$https_proxy --build-arg http_proxy=$http_proxy -f comps/dataprep/multimedia2text/video2audio/Dockerfile .
```
#### Multimedia to Text Service
The Multimedia to Text Service transforms multimedia data to text data. Follow these steps to build and run the service:
```bash
docker build -t opea/dataprep-multimedia2text:latest --build-arg https_proxy=$https_proxy --build-arg http_proxy=$http_proxy -f comps/dataprep/multimedia2text/Dockerfile .
```
### 2. Build MegaService Docker Image
To construct the Mega Service, we utilize the [GenAIComps](https://github.com/opea-project/GenAIComps.git) microservice pipeline within the `docsum.py` Python script. Build the MegaService Docker image via below command:
```bash
git clone https://github.com/opea-project/GenAIExamples
cd GenAIExamples/DocSum
cd GenAIExamples/DocSum/
docker build -t opea/docsum:latest --build-arg https_proxy=$https_proxy --build-arg http_proxy=$http_proxy -f Dockerfile .
```
### 4. Build UI Docker Image
### 3. Build UI Docker Image
Construct the frontend Docker image using the command below:
Several UI options are provided. If you need to work with multimedia documents, .doc, or .pdf files, suggested to use Gradio UI.
#### Svelte UI
Build the frontend Docker image via below command:
```bash
cd GenAIExamples/DocSum/
docker build -t opea/docsum-ui:latest --build-arg https_proxy=$https_proxy --build-arg http_proxy=$http_proxy -f ./docker/Dockerfile .
cd GenAIExamples/DocSum/ui
docker build -t opea/docsum-ui:latest --build-arg https_proxy=$https_proxy --build-arg http_proxy=$http_proxy -f docker/Dockerfile .
```
### 5. Build React UI Docker Image
#### Gradio UI
Build the Gradio UI frontend Docker image using the following command:
```bash
cd GenAIExamples/DocSum/ui
docker build -t opea/docsum-gradio-ui:latest --build-arg https_proxy=$https_proxy --build-arg http_proxy=$http_proxy -f docker/Dockerfile.gradio .
```
#### React UI
Build the frontend Docker image via below command:
@@ -49,48 +77,66 @@ Build the frontend Docker image via below command:
cd GenAIExamples/DocSum/ui
export BACKEND_SERVICE_ENDPOINT="http://${host_ip}:8888/v1/docsum"
docker build -t opea/docsum-react-ui:latest --build-arg BACKEND_SERVICE_ENDPOINT=$BACKEND_SERVICE_ENDPOINT -f ./docker/Dockerfile.react .
docker build -t opea/docsum-react-ui:latest --build-arg BACKEND_SERVICE_ENDPOINT=$BACKEND_SERVICE_ENDPOINT --build-arg https_proxy=$https_proxy --build-arg http_proxy=$http_proxy -f ./docker/Dockerfile.react .
```
Then run the command `docker images`, you will have the following Docker Images:
1. `ghcr.io/huggingface/tgi-gaudi:2.0.6`
2. `opea/llm-docsum-tgi:latest`
3. `opea/docsum:latest`
4. `opea/docsum-ui:latest`
5. `opea/docsum-react-ui:latest`
## 🚀 Start Microservices and MegaService
### Required Models
We set default model as "Intel/neural-chat-7b-v3-3", change "LLM_MODEL_ID" in following setting if you want to use other models.
If use gated models, you also need to provide [huggingface token](https://huggingface.co/docs/hub/security-tokens) to "HUGGINGFACEHUB_API_TOKEN" environment variable.
### Setup Environment Variables
Since the `compose.yaml` will consume some environment variables, you need to setup them in advance as below.
Default model is "Intel/neural-chat-7b-v3-3". Change "LLM_MODEL_ID" environment variable in commands below if you want to use another model.
```bash
export no_proxy=${your_no_proxy}
export http_proxy=${your_http_proxy}
export https_proxy=${your_http_proxy}
export LLM_MODEL_ID="Intel/neural-chat-7b-v3-3"
export TGI_LLM_ENDPOINT="http://${host_ip}:8008"
export HUGGINGFACEHUB_API_TOKEN=${your_hf_api_token}
export MEGA_SERVICE_HOST_IP=${host_ip}
export LLM_SERVICE_HOST_IP=${host_ip}
export BACKEND_SERVICE_ENDPOINT="http://${host_ip}:8888/v1/docsum"
```
Note: Please replace with `host_ip` with your external IP address, do not use localhost.
When using gated models, you also need to provide [HuggingFace token](https://huggingface.co/docs/hub/security-tokens) to "HUGGINGFACEHUB_API_TOKEN" environment variable.
### Setup Environment Variable
To set up environment variables for deploying Document Summarization services, follow these steps:
1. Set the required environment variables:
```bash
# Example: host_ip="192.168.1.1"
export host_ip="External_Public_IP"
# Example: no_proxy="localhost, 127.0.0.1, 192.168.1.1"
export no_proxy="Your_No_Proxy"
export HUGGINGFACEHUB_API_TOKEN="Your_Huggingface_API_Token"
```
2. If you are in a proxy environment, also set the proxy-related environment variables:
```bash
export http_proxy="Your_HTTP_Proxy"
export https_proxy="Your_HTTPs_Proxy"
```
3. Set up other environment variables:
```bash
source GenAIExamples/DocSum/docker_compose/set_env.sh
```
### Start Microservice Docker Containers
```bash
cd GenAIExamples/DocSum/docker_compose/intel/hpu/gaudi
docker compose up -d
docker compose -f compose.yaml up -d
```
You will have the following Docker Images:
1. `opea/docsum-ui:latest`
2. `opea/docsum:latest`
3. `opea/llm-docsum-tgi:latest`
4. `opea/whisper:latest`
5. `opea/dataprep-audio2text:latest`
6. `opea/dataprep-multimedia2text:latest`
7. `opea/dataprep-video2audio:latest`
### Validate Microservices
1. TGI Service
@@ -98,7 +144,7 @@ docker compose up -d
```bash
curl http://${host_ip}:8008/generate \
-X POST \
-d '{"inputs":"What is Deep Learning?","parameters":{"max_new_tokens":64, "do_sample": true}}' \
-d '{"inputs":"What is Deep Learning?","parameters":{"max_new_tokens":17, "do_sample": true}}' \
-H 'Content-Type: application/json'
```
@@ -111,20 +157,137 @@ docker compose up -d
-H 'Content-Type: application/json'
```
3. MegaService
3. Whisper Microservice
```bash
curl http://${host_ip}:7066/v1/asr \
-X POST \
-d '{"audio":"UklGRigAAABXQVZFZm10IBIAAAABAAEARKwAAIhYAQACABAAAABkYXRhAgAAAAEA"}' \
-H 'Content-Type: application/json'
```
Expected output:
```bash
{"asr_result":"you"}
```
4. Audio2Text Microservice
```bash
curl http://${host_ip}:9199/v1/audio/transcriptions \
-X POST \
-d '{"byte_str":"UklGRigAAABXQVZFZm10IBIAAAABAAEARKwAAIhYAQACABAAAABkYXRhAgAAAAEA"}' \
-H 'Content-Type: application/json'
```
Expected output:
```bash
{"downstream_black_list":[],"id":"--> this will be different id number for each run <--","query":"you"}
```
5. Multimedia to text Microservice
```bash
curl http://${host_ip}:7079/v1/multimedia2text \
-X POST \
-d '{"audio":"UklGRigAAABXQVZFZm10IBIAAAABAAEARKwAAIhYAQACABAAAABkYXRhAgAAAAEA"}' \
-H 'Content-Type: application/json'
```
Expected output:
```bash
{"downstream_black_list":[],"id":"--> this will be different id number for each run <--","query":"you"}
```
6. MegaService
Text:
```bash
curl -X POST http://${host_ip}:8888/v1/docsum \
-H "Content-Type: application/json" \
-d '{"type": "text", "messages": "Text Embeddings Inference (TEI) is a toolkit for deploying and serving open source text embeddings and sequence classification models. TEI enables high-performance extraction for the most popular models, including FlagEmbedding, Ember, GTE and E5."}'
# Use English mode (default).
curl http://${host_ip}:8888/v1/docsum \
-H "Content-Type: multipart/form-data" \
-F "type=text" \
-F "messages=Text Embeddings Inference (TEI) is a toolkit for deploying and serving open source text embeddings and sequence classification models. TEI enables high-performance extraction for the most popular models, including FlagEmbedding, Ember, GTE and E5." \
-F "max_tokens=32" \
-F "language=en" \
-F "stream=false"
-F "stream=true"
# Use Chinese mode.
curl http://${host_ip}:8888/v1/docsum \
-H "Content-Type: multipart/form-data" \
-F "type=text" \
-F "messages=2024年9月26日北京——今日英特尔正式发布英特尔® 至强® 6性能核处理器代号Granite Rapids为AI、数据分析、科学计算等计算密集型业务提供卓越性能。" \
-F "max_tokens=32" \
-F "language=zh" \
-F "stream=true"
# Upload file
curl http://${host_ip}:8888/v1/docsum \
-H "Content-Type: multipart/form-data" \
-F "type=text" \
-F "messages=" \
-F "files=@/path to your file (.txt, .docx, .pdf)" \
-F "max_tokens=32" \
-F "language=en" \
-F "stream=true"
```
> Audio and Video file uploads are not supported in docsum with curl request, please use the Gradio-UI.
Audio:
```bash
curl -X POST http://${host_ip}:8888/v1/docsum \
-H "Content-Type: application/json" \
-d '{"type": "audio", "messages": "UklGRigAAABXQVZFZm10IBIAAAABAAEARKwAAIhYAQACABAAAABkYXRhAgAAAAEA"}'
curl http://${host_ip}:8888/v1/docsum \
-H "Content-Type: multipart/form-data" \
-F "type=audio" \
-F "messages=UklGRigAAABXQVZFZm10IBIAAAABAAEARKwAAIhYAQACABAAAABkYXRhAgAAAAEA" \
-F "max_tokens=32" \
-F "language=en" \
-F "stream=true"
```
Video:
```bash
curl -X POST http://${host_ip}:8888/v1/docsum \
-H "Content-Type: application/json" \
-d '{"type": "video", "messages": "convert your video to base64 data type"}'
curl http://${host_ip}:8888/v1/docsum \
-H "Content-Type: multipart/form-data" \
-F "type=video" \
-F "messages=convert your video to base64 data type" \
-F "max_tokens=32" \
-F "language=en" \
-F "stream=true"
```
> More detailed tests can be found here `cd GenAIExamples/DocSum/test`
## 🚀 Launch the UI
Several UI options are provided. If you need to work with multimedia documents, .doc, or .pdf files, suggested to use Gradio UI.
### Gradio UI
Open this URL `http://{host_ip}:5173` in your browser to access the Gradio based frontend.
![project-screenshot](../../../../assets/img/docSum_ui_gradio_text.png)
## 🚀 Launch the Svelte UI
Open this URL `http://{host_ip}:5173` in your browser to access the frontend.
Open this URL `http://{host_ip}:5173` in your browser to access the Svelte based frontend.
![project-screenshot](https://github.com/intel-ai-tce/GenAIExamples/assets/21761437/93b1ed4b-4b76-4875-927e-cc7818b4825b)

View File

@@ -24,7 +24,8 @@ services:
- SYS_NICE
ipc: host
command: --model-id ${LLM_MODEL_ID} --max-input-length 1024 --max-total-tokens 2048
llm:
llm-docsum-tgi:
image: ${REGISTRY:-opea}/llm-docsum-tgi:${TAG:-latest}
container_name: llm-docsum-gaudi-server
depends_on:
@@ -39,12 +40,61 @@ services:
TGI_LLM_ENDPOINT: ${TGI_LLM_ENDPOINT}
HUGGINGFACEHUB_API_TOKEN: ${HUGGINGFACEHUB_API_TOKEN}
restart: unless-stopped
whisper:
image: ${REGISTRY:-opea}/whisper:${TAG:-latest}
container_name: whisper-service
ports:
- "7066:7066"
ipc: host
environment:
no_proxy: ${no_proxy}
http_proxy: ${http_proxy}
https_proxy: ${https_proxy}
HABANA_VISIBLE_DEVICES: all
OMPI_MCA_btl_vader_single_copy_mechanism: none
runtime: habana
cap_add:
- SYS_NICE
restart: unless-stopped
dataprep-audio2text:
image: ${REGISTRY:-opea}/dataprep-audio2text:${TAG:-latest}
container_name: dataprep-audio2text-service
ports:
- "9199:9099"
ipc: host
environment:
A2T_ENDPOINT: ${A2T_ENDPOINT}
dataprep-video2audio:
image: ${REGISTRY:-opea}/dataprep-video2audio:${TAG:-latest}
container_name: dataprep-video2audio-service
ports:
- "7078:7078"
ipc: host
environment:
V2A_ENDPOINT: ${V2A_ENDPOINT}
dataprep-multimedia2text:
image: ${REGISTRY:-opea}/dataprep-multimedia2text:${TAG:-latest}
container_name: dataprep-multimedia2text
ports:
- "7079:7079"
ipc: host
environment:
V2A_ENDPOINT: ${V2A_ENDPOINT}
A2T_ENDPOINT: ${A2T_ENDPOINT}
docsum-gaudi-backend-server:
image: ${REGISTRY:-opea}/docsum:${TAG:-latest}
container_name: docsum-gaudi-backend-server
depends_on:
- tgi-service
- llm
- llm-docsum-tgi
- dataprep-multimedia2text
- dataprep-video2audio
- dataprep-audio2text
ports:
- "8888:8888"
environment:
@@ -52,10 +102,13 @@ services:
- https_proxy=${https_proxy}
- http_proxy=${http_proxy}
- MEGA_SERVICE_HOST_IP=${MEGA_SERVICE_HOST_IP}
- DATA_SERVICE_HOST_IP=${DATA_SERVICE_HOST_IP}
- LLM_SERVICE_HOST_IP=${LLM_SERVICE_HOST_IP}
ipc: host
restart: always
docsum-gaudi-ui-server:
docsum-ui:
image: ${REGISTRY:-opea}/docsum-ui:${TAG:-latest}
container_name: docsum-gaudi-ui-server
depends_on:
@@ -66,6 +119,7 @@ services:
- no_proxy=${no_proxy}
- https_proxy=${https_proxy}
- http_proxy=${http_proxy}
- BACKEND_SERVICE_ENDPOINT=${BACKEND_SERVICE_ENDPOINT}
- DOC_BASE_URL=${BACKEND_SERVICE_ENDPOINT}
ipc: host
restart: always