Refactor FaqGen (#1093)
Signed-off-by: Xinyao Wang <xinyao.wang@intel.com> Co-authored-by: pre-commit-ci[bot] <66853113+pre-commit-ci[bot]@users.noreply.github.com>
This commit is contained in:
50
comps/llms/deployment/docker_compose/faq-generation_tgi.yaml
Normal file
50
comps/llms/deployment/docker_compose/faq-generation_tgi.yaml
Normal file
@@ -0,0 +1,50 @@
|
||||
# Copyright (C) 2024 Intel Corporation
|
||||
# SPDX-License-Identifier: Apache-2.0
|
||||
|
||||
version: "3.8"
|
||||
|
||||
services:
|
||||
tgi-service:
|
||||
image: ghcr.io/huggingface/text-generation-inference:2.4.0-intel-cpu
|
||||
container_name: tgi-server
|
||||
ports:
|
||||
- ${LLM_ENDPOINT_PORT:-8008}:80
|
||||
volumes:
|
||||
- "./data:/data"
|
||||
shm_size: 1g
|
||||
environment:
|
||||
no_proxy: ${no_proxy}
|
||||
http_proxy: ${http_proxy}
|
||||
https_proxy: ${https_proxy}
|
||||
HF_TOKEN: ${HUGGINGFACEHUB_API_TOKEN}
|
||||
host_ip: ${host_ip}
|
||||
LLM_ENDPOINT_PORT: ${LLM_ENDPOINT_PORT}
|
||||
healthcheck:
|
||||
test: ["CMD-SHELL", "curl -f http://${host_ip}:${LLM_ENDPOINT_PORT}/health || exit 1"]
|
||||
interval: 10s
|
||||
timeout: 10s
|
||||
retries: 100
|
||||
command: --model-id ${LLM_MODEL_ID} --cuda-graphs 0
|
||||
llm:
|
||||
image: opea/llm-faqgen:latest
|
||||
container_name: llm-faqgen-server
|
||||
depends_on:
|
||||
tgi-service:
|
||||
condition: service_healthy
|
||||
ports:
|
||||
- ${FAQ_PORT:-9000}:9000
|
||||
ipc: host
|
||||
environment:
|
||||
no_proxy: ${no_proxy}
|
||||
http_proxy: ${http_proxy}
|
||||
https_proxy: ${https_proxy}
|
||||
LLM_ENDPOINT: ${LLM_ENDPOINT}
|
||||
LLM_MODEL_ID: ${LLM_MODEL_ID}
|
||||
HUGGINGFACEHUB_API_TOKEN: ${HUGGINGFACEHUB_API_TOKEN}
|
||||
FAQGen_COMPONENT_NAME: ${FAQGen_COMPONENT_NAME}
|
||||
LOGFLAG: ${LOGFLAG:-False}
|
||||
restart: unless-stopped
|
||||
|
||||
networks:
|
||||
default:
|
||||
driver: bridge
|
||||
@@ -0,0 +1,61 @@
|
||||
# Copyright (C) 2024 Intel Corporation
|
||||
# SPDX-License-Identifier: Apache-2.0
|
||||
|
||||
version: "3.8"
|
||||
|
||||
services:
|
||||
tgi-service:
|
||||
image: ghcr.io/huggingface/tgi-gaudi:2.3.1
|
||||
container_name: tgi-gaudi-server
|
||||
ports:
|
||||
- ${LLM_ENDPOINT_PORT:-8008}:80
|
||||
volumes:
|
||||
- "./data:/data"
|
||||
environment:
|
||||
no_proxy: ${no_proxy}
|
||||
http_proxy: ${http_proxy}
|
||||
https_proxy: ${https_proxy}
|
||||
HUGGING_FACE_HUB_TOKEN: ${HUGGINGFACEHUB_API_TOKEN}
|
||||
HF_HUB_DISABLE_PROGRESS_BARS: 1
|
||||
HF_HUB_ENABLE_HF_TRANSFER: 0
|
||||
HABANA_VISIBLE_DEVICES: all
|
||||
OMPI_MCA_btl_vader_single_copy_mechanism: none
|
||||
ENABLE_HPU_GRAPH: true
|
||||
LIMIT_HPU_GRAPH: true
|
||||
USE_FLASH_ATTENTION: true
|
||||
FLASH_ATTENTION_RECOMPUTE: true
|
||||
host_ip: ${host_ip}
|
||||
LLM_ENDPOINT_PORT: ${LLM_ENDPOINT_PORT}
|
||||
runtime: habana
|
||||
cap_add:
|
||||
- SYS_NICE
|
||||
ipc: host
|
||||
healthcheck:
|
||||
test: ["CMD-SHELL", "curl -f http://${host_ip}:${LLM_ENDPOINT_PORT}/health || exit 1"]
|
||||
interval: 10s
|
||||
timeout: 10s
|
||||
retries: 100
|
||||
command: --model-id ${LLM_MODEL_ID} --max-input-length 1024 --max-total-tokens 2048
|
||||
llm:
|
||||
image: opea/llm-faqgen:latest
|
||||
container_name: llm-faqgen-server
|
||||
depends_on:
|
||||
tgi-service:
|
||||
condition: service_healthy
|
||||
ports:
|
||||
- ${FAQ_PORT:-9000}:9000
|
||||
ipc: host
|
||||
environment:
|
||||
no_proxy: ${no_proxy}
|
||||
http_proxy: ${http_proxy}
|
||||
https_proxy: ${https_proxy}
|
||||
LLM_ENDPOINT: ${LLM_ENDPOINT}
|
||||
LLM_MODEL_ID: ${LLM_MODEL_ID}
|
||||
HUGGINGFACEHUB_API_TOKEN: ${HUGGINGFACEHUB_API_TOKEN}
|
||||
FAQGen_COMPONENT_NAME: ${FAQGen_COMPONENT_NAME}
|
||||
LOGFLAG: ${LOGFLAG:-False}
|
||||
restart: unless-stopped
|
||||
|
||||
networks:
|
||||
default:
|
||||
driver: bridge
|
||||
@@ -0,0 +1,53 @@
|
||||
# Copyright (C) 2024 Intel Corporation
|
||||
# SPDX-License-Identifier: Apache-2.0
|
||||
|
||||
version: "3.8"
|
||||
|
||||
services:
|
||||
vllm-service:
|
||||
image: opea/vllm:latest
|
||||
container_name: vllm-server
|
||||
ports:
|
||||
- ${LLM_ENDPOINT_PORT:-8008}:80
|
||||
volumes:
|
||||
- "./data:/data"
|
||||
shm_size: 128g
|
||||
environment:
|
||||
no_proxy: ${no_proxy}
|
||||
http_proxy: ${http_proxy}
|
||||
https_proxy: ${https_proxy}
|
||||
HF_TOKEN: ${HUGGINGFACEHUB_API_TOKEN}
|
||||
LLM_MODEL_ID: ${LLM_MODEL_ID}
|
||||
VLLM_TORCH_PROFILER_DIR: "/mnt"
|
||||
host_ip: ${host_ip}
|
||||
LLM_ENDPOINT_PORT: ${LLM_ENDPOINT_PORT}
|
||||
VLLM_SKIP_WARMUP: ${VLLM_SKIP_WARMUP:-false}
|
||||
healthcheck:
|
||||
test: ["CMD-SHELL", "curl -f http://${host_ip}:${LLM_ENDPOINT_PORT}/health || exit 1"]
|
||||
interval: 10s
|
||||
timeout: 10s
|
||||
retries: 100
|
||||
command: --model $LLM_MODEL_ID --host 0.0.0.0 --port 80
|
||||
llm:
|
||||
image: opea/llm-faqgen:latest
|
||||
container_name: llm-faqgen-server
|
||||
depends_on:
|
||||
vllm-service:
|
||||
condition: service_healthy
|
||||
ports:
|
||||
- ${FAQ_PORT:-9000}:9000
|
||||
ipc: host
|
||||
environment:
|
||||
no_proxy: ${no_proxy}
|
||||
http_proxy: ${http_proxy}
|
||||
https_proxy: ${https_proxy}
|
||||
LLM_ENDPOINT: ${LLM_ENDPOINT}
|
||||
LLM_MODEL_ID: ${LLM_MODEL_ID}
|
||||
HUGGINGFACEHUB_API_TOKEN: ${HUGGINGFACEHUB_API_TOKEN}
|
||||
FAQGen_COMPONENT_NAME: ${FAQGen_COMPONENT_NAME}
|
||||
LOGFLAG: ${LOGFLAG:-False}
|
||||
restart: unless-stopped
|
||||
|
||||
networks:
|
||||
default:
|
||||
driver: bridge
|
||||
@@ -8,37 +8,49 @@ services:
|
||||
image: opea/vllm-gaudi:latest
|
||||
container_name: vllm-gaudi-server
|
||||
ports:
|
||||
- "8008:80"
|
||||
- ${LLM_ENDPOINT_PORT:-8008}:80
|
||||
volumes:
|
||||
- "./data:/data"
|
||||
environment:
|
||||
no_proxy: ${no_proxy}
|
||||
http_proxy: ${http_proxy}
|
||||
https_proxy: ${https_proxy}
|
||||
HF_TOKEN: ${HF_TOKEN}
|
||||
HF_TOKEN: ${HUGGINGFACEHUB_API_TOKEN}
|
||||
HABANA_VISIBLE_DEVICES: all
|
||||
OMPI_MCA_btl_vader_single_copy_mechanism: none
|
||||
LLM_MODEL_ID: ${LLM_MODEL_ID}
|
||||
VLLM_TORCH_PROFILER_DIR: "/mnt"
|
||||
host_ip: ${host_ip}
|
||||
LLM_ENDPOINT_PORT: ${LLM_ENDPOINT_PORT}
|
||||
VLLM_SKIP_WARMUP: ${VLLM_SKIP_WARMUP:-false}
|
||||
runtime: habana
|
||||
cap_add:
|
||||
- SYS_NICE
|
||||
ipc: host
|
||||
command: --model $LLM_MODEL_ID --tensor-parallel-size 1 --host 0.0.0.0 --port 80
|
||||
healthcheck:
|
||||
test: ["CMD-SHELL", "curl -f http://${host_ip}:${LLM_ENDPOINT_PORT}/health || exit 1"]
|
||||
interval: 10s
|
||||
timeout: 10s
|
||||
retries: 100
|
||||
command: --model $LLM_MODEL_ID --tensor-parallel-size 1 --host 0.0.0.0 --port 80 --block-size 128 --max-num-seqs 256 --max-seq_len-to-capture 2048
|
||||
llm:
|
||||
image: opea/llm-faqgen-vllm:latest
|
||||
image: opea/llm-faqgen:latest
|
||||
container_name: llm-faqgen-server
|
||||
depends_on:
|
||||
- vllm-service
|
||||
vllm-service:
|
||||
condition: service_healthy
|
||||
ports:
|
||||
- "9000:9000"
|
||||
- ${FAQ_PORT:-9000}:9000
|
||||
ipc: host
|
||||
environment:
|
||||
no_proxy: ${no_proxy}
|
||||
http_proxy: ${http_proxy}
|
||||
https_proxy: ${https_proxy}
|
||||
vLLM_ENDPOINT: ${vLLM_ENDPOINT}
|
||||
HUGGINGFACEHUB_API_TOKEN: ${HF_TOKEN}
|
||||
LLM_ENDPOINT: ${LLM_ENDPOINT}
|
||||
LLM_MODEL_ID: ${LLM_MODEL_ID}
|
||||
HUGGINGFACEHUB_API_TOKEN: ${HUGGINGFACEHUB_API_TOKEN}
|
||||
FAQGen_COMPONENT_NAME: ${FAQGen_COMPONENT_NAME}
|
||||
LOGFLAG: ${LOGFLAG:-False}
|
||||
restart: unless-stopped
|
||||
|
||||
networks:
|
||||
@@ -1,75 +0,0 @@
|
||||
# TGI FAQGen LLM Microservice
|
||||
|
||||
This microservice interacts with the TGI LLM server to generate FAQs from Input Text.[Text Generation Inference](https://github.com/huggingface/text-generation-inference) (TGI) is a toolkit for deploying and serving Large Language Models (LLMs). TGI enables high-performance text generation for the most popular open-source LLMs, including Llama, Falcon, StarCoder, BLOOM, GPT-NeoX, and more.
|
||||
|
||||
## 🚀1. Start Microservice with Docker
|
||||
|
||||
If you start an LLM microservice with docker, the `docker_compose_llm.yaml` file will automatically start a TGI service with docker.
|
||||
|
||||
### 1.1 Setup Environment Variables
|
||||
|
||||
In order to start TGI and LLM services, you need to setup the following environment variables first.
|
||||
|
||||
```bash
|
||||
export HF_TOKEN=${your_hf_api_token}
|
||||
export TGI_LLM_ENDPOINT="http://${your_ip}:8008"
|
||||
export LLM_MODEL_ID=${your_hf_llm_model}
|
||||
```
|
||||
|
||||
### 1.2 Build Docker Image
|
||||
|
||||
```bash
|
||||
cd ../../../../../
|
||||
docker build -t opea/llm-faqgen-tgi:latest --build-arg https_proxy=$https_proxy --build-arg http_proxy=$http_proxy -f comps/llms/faq-generation/tgi/langchain/Dockerfile .
|
||||
```
|
||||
|
||||
To start a docker container, you have two options:
|
||||
|
||||
- A. Run Docker with CLI
|
||||
- B. Run Docker with Docker Compose
|
||||
|
||||
You can choose one as needed.
|
||||
|
||||
### 1.3 Run Docker with CLI (Option A)
|
||||
|
||||
```bash
|
||||
docker run -d -p 8008:80 -v ./data:/data --name tgi_service --shm-size 1g ghcr.io/huggingface/text-generation-inference:1.4 --model-id ${LLM_MODEL_ID}
|
||||
```
|
||||
|
||||
```bash
|
||||
docker run -d --name="llm-faqgen-server" -p 9000:9000 --ipc=host -e http_proxy=$http_proxy -e https_proxy=$https_proxy -e TGI_LLM_ENDPOINT=$TGI_LLM_ENDPOINT -e HUGGINGFACEHUB_API_TOKEN=$HF_TOKEN opea/llm-faqgen-tgi:latest
|
||||
```
|
||||
|
||||
### 1.4 Run Docker with Docker Compose (Option B)
|
||||
|
||||
```bash
|
||||
docker compose -f docker_compose_llm.yaml up -d
|
||||
```
|
||||
|
||||
## 🚀3. Consume LLM Service
|
||||
|
||||
### 3.1 Check Service Status
|
||||
|
||||
```bash
|
||||
curl http://${your_ip}:9000/v1/health_check\
|
||||
-X GET \
|
||||
-H 'Content-Type: application/json'
|
||||
```
|
||||
|
||||
### 3.2 Consume FAQGen LLM Service
|
||||
|
||||
```bash
|
||||
# Streaming Response
|
||||
# Set stream to True. Default will be True.
|
||||
curl http://${your_ip}:9000/v1/faqgen \
|
||||
-X POST \
|
||||
-d '{"query":"Text Embeddings Inference (TEI) is a toolkit for deploying and serving open source text embeddings and sequence classification models. TEI enables high-performance extraction for the most popular models, including FlagEmbedding, Ember, GTE and E5."}' \
|
||||
-H 'Content-Type: application/json'
|
||||
|
||||
# Non-Streaming Response
|
||||
# Set stream to False.
|
||||
curl http://${your_ip}:9000/v1/faqgen \
|
||||
-X POST \
|
||||
-d '{"query":"Text Embeddings Inference (TEI) is a toolkit for deploying and serving open source text embeddings and sequence classification models. TEI enables high-performance extraction for the most popular models, including FlagEmbedding, Ember, GTE and E5.", "stream":false}' \
|
||||
-H 'Content-Type: application/json'
|
||||
```
|
||||
@@ -1,34 +0,0 @@
|
||||
# Copyright (C) 2024 Intel Corporation
|
||||
# SPDX-License-Identifier: Apache-2.0
|
||||
|
||||
version: "3.8"
|
||||
|
||||
services:
|
||||
tgi_service:
|
||||
image: ghcr.io/huggingface/text-generation-inference:1.4
|
||||
container_name: tgi-service
|
||||
ports:
|
||||
- "8008:80"
|
||||
volumes:
|
||||
- "./data:/data"
|
||||
environment:
|
||||
HF_TOKEN: ${HF_TOKEN}
|
||||
shm_size: 1g
|
||||
command: --model-id ${LLM_MODEL_ID}
|
||||
llm:
|
||||
image: opea/llm-faqgen-tgi:latest
|
||||
container_name: llm-faqgen-server
|
||||
ports:
|
||||
- "9000:9000"
|
||||
ipc: host
|
||||
environment:
|
||||
no_proxy: ${no_proxy}
|
||||
http_proxy: ${http_proxy}
|
||||
https_proxy: ${https_proxy}
|
||||
TGI_LLM_ENDPOINT: ${TGI_LLM_ENDPOINT}
|
||||
HUGGINGFACEHUB_API_TOKEN: ${HF_TOKEN}
|
||||
restart: unless-stopped
|
||||
|
||||
networks:
|
||||
default:
|
||||
driver: bridge
|
||||
@@ -1,8 +0,0 @@
|
||||
#!/usr/bin/env bash
|
||||
|
||||
# Copyright (C) 2024 Intel Corporation
|
||||
# SPDX-License-Identifier: Apache-2.0
|
||||
|
||||
pip --no-cache-dir install -r requirements-runtime.txt
|
||||
|
||||
python llm.py
|
||||
@@ -1,100 +0,0 @@
|
||||
# Copyright (C) 2024 Intel Corporation
|
||||
# SPDX-License-Identifier: Apache-2.0
|
||||
|
||||
import os
|
||||
|
||||
from fastapi.responses import StreamingResponse
|
||||
from langchain.chains.summarize import load_summarize_chain
|
||||
from langchain.docstore.document import Document
|
||||
from langchain.prompts import PromptTemplate
|
||||
from langchain.text_splitter import CharacterTextSplitter
|
||||
from langchain_community.llms import HuggingFaceEndpoint
|
||||
|
||||
from comps import CustomLogger, GeneratedDoc, LLMParamsDoc, ServiceType, opea_microservices, register_microservice
|
||||
from comps.cores.mega.utils import get_access_token
|
||||
|
||||
logger = CustomLogger("llm_faqgen")
|
||||
logflag = os.getenv("LOGFLAG", False)
|
||||
|
||||
# Environment variables
|
||||
TOKEN_URL = os.getenv("TOKEN_URL")
|
||||
CLIENTID = os.getenv("CLIENTID")
|
||||
CLIENT_SECRET = os.getenv("CLIENT_SECRET")
|
||||
|
||||
|
||||
def post_process_text(text: str):
|
||||
if text == " ":
|
||||
return "data: @#$\n\n"
|
||||
if text == "\n":
|
||||
return "data: <br/>\n\n"
|
||||
if text.isspace():
|
||||
return None
|
||||
new_text = text.replace(" ", "@#$")
|
||||
return f"data: {new_text}\n\n"
|
||||
|
||||
|
||||
@register_microservice(
|
||||
name="opea_service@llm_faqgen",
|
||||
service_type=ServiceType.LLM,
|
||||
endpoint="/v1/faqgen",
|
||||
host="0.0.0.0",
|
||||
port=9000,
|
||||
)
|
||||
async def llm_generate(input: LLMParamsDoc):
|
||||
if logflag:
|
||||
logger.info(input)
|
||||
access_token = (
|
||||
get_access_token(TOKEN_URL, CLIENTID, CLIENT_SECRET) if TOKEN_URL and CLIENTID and CLIENT_SECRET else None
|
||||
)
|
||||
server_kwargs = {}
|
||||
if access_token:
|
||||
server_kwargs["headers"] = {"Authorization": f"Bearer {access_token}"}
|
||||
llm = HuggingFaceEndpoint(
|
||||
endpoint_url=llm_endpoint,
|
||||
max_new_tokens=input.max_tokens,
|
||||
top_k=input.top_k,
|
||||
top_p=input.top_p,
|
||||
typical_p=input.typical_p,
|
||||
temperature=input.temperature,
|
||||
repetition_penalty=input.repetition_penalty,
|
||||
streaming=input.stream,
|
||||
server_kwargs=server_kwargs,
|
||||
)
|
||||
templ = """Create a concise FAQs (frequently asked questions and answers) for following text:
|
||||
TEXT: {text}
|
||||
Do not use any prefix or suffix to the FAQ.
|
||||
"""
|
||||
PROMPT = PromptTemplate.from_template(templ)
|
||||
llm_chain = load_summarize_chain(llm=llm, prompt=PROMPT)
|
||||
texts = text_splitter.split_text(input.query)
|
||||
|
||||
# Create multiple documents
|
||||
docs = [Document(page_content=t) for t in texts]
|
||||
|
||||
if input.stream:
|
||||
|
||||
async def stream_generator():
|
||||
from langserve.serialization import WellKnownLCSerializer
|
||||
|
||||
_serializer = WellKnownLCSerializer()
|
||||
async for chunk in llm_chain.astream_log(docs):
|
||||
data = _serializer.dumps({"ops": chunk.ops}).decode("utf-8")
|
||||
if logflag:
|
||||
logger.info(data)
|
||||
yield f"data: {data}\n\n"
|
||||
yield "data: [DONE]\n\n"
|
||||
|
||||
return StreamingResponse(stream_generator(), media_type="text/event-stream")
|
||||
else:
|
||||
response = await llm_chain.ainvoke(docs)
|
||||
response = response["output_text"]
|
||||
if logflag:
|
||||
logger.info(response)
|
||||
return GeneratedDoc(text=response, prompt=input.query)
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
llm_endpoint = os.getenv("TGI_LLM_ENDPOINT", "http://localhost:8080")
|
||||
# Split text
|
||||
text_splitter = CharacterTextSplitter()
|
||||
opea_microservices["opea_service@llm_faqgen"].start()
|
||||
@@ -1,25 +0,0 @@
|
||||
# Copyright (C) 2024 Intel Corporation
|
||||
# SPDX-License-Identifier: Apache-2.0
|
||||
|
||||
FROM python:3.11-slim
|
||||
|
||||
RUN apt-get update -y && apt-get install -y --no-install-recommends --fix-missing \
|
||||
libgl1-mesa-glx \
|
||||
libjemalloc-dev
|
||||
|
||||
RUN useradd -m -s /bin/bash user && \
|
||||
mkdir -p /home/user && \
|
||||
chown -R user /home/user/
|
||||
|
||||
USER user
|
||||
|
||||
COPY comps /home/user/comps
|
||||
|
||||
RUN pip install --no-cache-dir --upgrade pip setuptools && \
|
||||
pip install --no-cache-dir -r /home/user/comps/llms/faq-generation/vllm/langchain/requirements.txt
|
||||
|
||||
ENV PYTHONPATH=$PYTHONPATH:/home/user
|
||||
|
||||
WORKDIR /home/user/comps/llms/faq-generation/vllm/langchain
|
||||
|
||||
ENTRYPOINT ["bash", "entrypoint.sh"]
|
||||
@@ -1,77 +0,0 @@
|
||||
# vLLM FAQGen LLM Microservice
|
||||
|
||||
This microservice interacts with the vLLM server to generate FAQs from Input Text.[vLLM](https://github.com/vllm-project/vllm) is a fast and easy-to-use library for LLM inference and serving, it delivers state-of-the-art serving throughput with a set of advanced features such as PagedAttention, Continuous batching and etc.. Besides GPUs, vLLM already supported [Intel CPUs](https://www.intel.com/content/www/us/en/products/overview.html) and [Gaudi accelerators](https://habana.ai/products).
|
||||
|
||||
## 🚀1. Start Microservice with Docker
|
||||
|
||||
If you start an LLM microservice with docker, the `docker_compose_llm.yaml` file will automatically start a VLLM service with docker.
|
||||
|
||||
To setup or build the vLLM image follow the instructions provided in [vLLM Gaudi](https://github.com/opea-project/GenAIComps/tree/main/comps/llms/text-generation/vllm/langchain#22-vllm-on-gaudi)
|
||||
|
||||
### 1.1 Setup Environment Variables
|
||||
|
||||
In order to start vLLM and LLM services, you need to setup the following environment variables first.
|
||||
|
||||
```bash
|
||||
export HF_TOKEN=${your_hf_api_token}
|
||||
export vLLM_ENDPOINT="http://${your_ip}:8008"
|
||||
export LLM_MODEL_ID=${your_hf_llm_model}
|
||||
```
|
||||
|
||||
### 1.3 Build Docker Image
|
||||
|
||||
```bash
|
||||
cd ../../../../../
|
||||
docker build -t opea/llm-faqgen-vllm:latest --build-arg https_proxy=$https_proxy --build-arg http_proxy=$http_proxy -f comps/llms/faq-generation/vllm/langchain/Dockerfile .
|
||||
```
|
||||
|
||||
To start a docker container, you have two options:
|
||||
|
||||
- A. Run Docker with CLI
|
||||
- B. Run Docker with Docker Compose
|
||||
|
||||
You can choose one as needed.
|
||||
|
||||
### 1.3 Run Docker with CLI (Option A)
|
||||
|
||||
```bash
|
||||
docker run -d -p 8008:80 -v ./data:/data --name vllm-service --shm-size 1g opea/vllm-gaudi:latest --model-id ${LLM_MODEL_ID}
|
||||
```
|
||||
|
||||
```bash
|
||||
docker run -d --name="llm-faqgen-server" -p 9000:9000 --ipc=host -e http_proxy=$http_proxy -e https_proxy=$https_proxy -e vLLM_ENDPOINT=$vLLM_ENDPOINT -e HUGGINGFACEHUB_API_TOKEN=$HF_TOKEN opea/llm-faqgen-vllm:latest
|
||||
```
|
||||
|
||||
### 1.4 Run Docker with Docker Compose (Option B)
|
||||
|
||||
```bash
|
||||
docker compose -f docker_compose_llm.yaml up -d
|
||||
```
|
||||
|
||||
## 🚀3. Consume LLM Service
|
||||
|
||||
### 3.1 Check Service Status
|
||||
|
||||
```bash
|
||||
curl http://${your_ip}:9000/v1/health_check\
|
||||
-X GET \
|
||||
-H 'Content-Type: application/json'
|
||||
```
|
||||
|
||||
### 3.2 Consume FAQGen LLM Service
|
||||
|
||||
```bash
|
||||
# Streaming Response
|
||||
# Set stream to True. Default will be True.
|
||||
curl http://${your_ip}:9000/v1/faqgen \
|
||||
-X POST \
|
||||
-d '{"query":"Text Embeddings Inference (TEI) is a toolkit for deploying and serving open source text embeddings and sequence classification models. TEI enables high-performance extraction for the most popular models, including FlagEmbedding, Ember, GTE and E5."}' \
|
||||
-H 'Content-Type: application/json'
|
||||
|
||||
# Non-Streaming Response
|
||||
# Set stream to False.
|
||||
curl http://${your_ip}:9000/v1/faqgen \
|
||||
-X POST \
|
||||
-d '{"query":"Text Embeddings Inference (TEI) is a toolkit for deploying and serving open source text embeddings and sequence classification models. TEI enables high-performance extraction for the most popular models, including FlagEmbedding, Ember, GTE and E5.", "stream":false}' \
|
||||
-H 'Content-Type: application/json'
|
||||
```
|
||||
@@ -1,2 +0,0 @@
|
||||
# Copyright (C) 2024 Intel Corporation
|
||||
# SPDX-License-Identifier: Apache-2.0
|
||||
@@ -1,102 +0,0 @@
|
||||
# Copyright (C) 2024 Intel Corporation
|
||||
# SPDX-License-Identifier: Apache-2.0
|
||||
|
||||
import os
|
||||
|
||||
from fastapi.responses import StreamingResponse
|
||||
from langchain.chains.summarize import load_summarize_chain
|
||||
from langchain.docstore.document import Document
|
||||
from langchain.prompts import PromptTemplate
|
||||
from langchain.text_splitter import CharacterTextSplitter
|
||||
from langchain_community.llms import VLLMOpenAI
|
||||
|
||||
from comps import CustomLogger, GeneratedDoc, LLMParamsDoc, ServiceType, opea_microservices, register_microservice
|
||||
from comps.cores.mega.utils import get_access_token
|
||||
|
||||
logger = CustomLogger("llm_faqgen")
|
||||
logflag = os.getenv("LOGFLAG", False)
|
||||
|
||||
# Environment variables
|
||||
TOKEN_URL = os.getenv("TOKEN_URL")
|
||||
CLIENTID = os.getenv("CLIENTID")
|
||||
CLIENT_SECRET = os.getenv("CLIENT_SECRET")
|
||||
|
||||
|
||||
def post_process_text(text: str):
|
||||
if text == " ":
|
||||
return "data: @#$\n\n"
|
||||
if text == "\n":
|
||||
return "data: <br/>\n\n"
|
||||
if text.isspace():
|
||||
return None
|
||||
new_text = text.replace(" ", "@#$")
|
||||
return f"data: {new_text}\n\n"
|
||||
|
||||
|
||||
@register_microservice(
|
||||
name="opea_service@llm_faqgen",
|
||||
service_type=ServiceType.LLM,
|
||||
endpoint="/v1/faqgen",
|
||||
host="0.0.0.0",
|
||||
port=9000,
|
||||
)
|
||||
async def llm_generate(input: LLMParamsDoc):
|
||||
if logflag:
|
||||
logger.info(input)
|
||||
access_token = (
|
||||
get_access_token(TOKEN_URL, CLIENTID, CLIENT_SECRET) if TOKEN_URL and CLIENTID and CLIENT_SECRET else None
|
||||
)
|
||||
headers = {}
|
||||
if access_token:
|
||||
headers = {"Authorization": f"Bearer {access_token}"}
|
||||
|
||||
model = input.model if input.model else os.getenv("LLM_MODEL_ID")
|
||||
llm = VLLMOpenAI(
|
||||
openai_api_key="EMPTY",
|
||||
openai_api_base=llm_endpoint + "/v1",
|
||||
model_name=model,
|
||||
default_headers=headers,
|
||||
max_tokens=input.max_tokens,
|
||||
top_p=input.top_p,
|
||||
streaming=input.stream,
|
||||
temperature=input.temperature,
|
||||
)
|
||||
|
||||
templ = """Create a concise FAQs (frequently asked questions and answers) for following text:
|
||||
TEXT: {text}
|
||||
Do not use any prefix or suffix to the FAQ.
|
||||
"""
|
||||
PROMPT = PromptTemplate.from_template(templ)
|
||||
llm_chain = load_summarize_chain(llm=llm, prompt=PROMPT)
|
||||
texts = text_splitter.split_text(input.query)
|
||||
|
||||
# Create multiple documents
|
||||
docs = [Document(page_content=t) for t in texts]
|
||||
|
||||
if input.stream:
|
||||
|
||||
async def stream_generator():
|
||||
from langserve.serialization import WellKnownLCSerializer
|
||||
|
||||
_serializer = WellKnownLCSerializer()
|
||||
async for chunk in llm_chain.astream_log(docs):
|
||||
data = _serializer.dumps({"ops": chunk.ops}).decode("utf-8")
|
||||
if logflag:
|
||||
logger.info(data)
|
||||
yield f"data: {data}\n\n"
|
||||
yield "data: [DONE]\n\n"
|
||||
|
||||
return StreamingResponse(stream_generator(), media_type="text/event-stream")
|
||||
else:
|
||||
response = await llm_chain.ainvoke(docs)
|
||||
response = response["output_text"]
|
||||
if logflag:
|
||||
logger.info(response)
|
||||
return GeneratedDoc(text=response, prompt=input.query)
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
llm_endpoint = os.getenv("vLLM_ENDPOINT", "http://localhost:8080")
|
||||
# Split text
|
||||
text_splitter = CharacterTextSplitter()
|
||||
opea_microservices["opea_service@llm_faqgen"].start()
|
||||
@@ -1 +0,0 @@
|
||||
langserve
|
||||
@@ -1,15 +0,0 @@
|
||||
docarray[full]
|
||||
fastapi
|
||||
huggingface_hub
|
||||
langchain
|
||||
langchain-huggingface
|
||||
langchain-openai
|
||||
langchain_community
|
||||
langchainhub
|
||||
opentelemetry-api
|
||||
opentelemetry-exporter-otlp
|
||||
opentelemetry-sdk
|
||||
prometheus-fastapi-instrumentator
|
||||
shortuuid
|
||||
transformers
|
||||
uvicorn
|
||||
@@ -16,10 +16,10 @@ USER user
|
||||
COPY comps /home/user/comps
|
||||
|
||||
RUN pip install --no-cache-dir --upgrade pip setuptools && \
|
||||
pip install --no-cache-dir -r /home/user/comps/llms/faq-generation/tgi/langchain/requirements.txt
|
||||
pip install --no-cache-dir -r /home/user/comps/llms/src/faq-generation/requirements.txt
|
||||
|
||||
ENV PYTHONPATH=$PYTHONPATH:/home/user
|
||||
|
||||
WORKDIR /home/user/comps/llms/faq-generation/tgi/langchain
|
||||
WORKDIR /home/user/comps/llms/src/faq-generation
|
||||
|
||||
ENTRYPOINT ["bash", "entrypoint.sh"]
|
||||
110
comps/llms/src/faq-generation/README.md
Normal file
110
comps/llms/src/faq-generation/README.md
Normal file
@@ -0,0 +1,110 @@
|
||||
# FAQGen LLM Microservice
|
||||
|
||||
This microservice interacts with the TGI/vLLM LLM server to generate FAQs(frequently asked questions and answers) from Input Text. You can set backend service either [TGI](../../../third_parties/tgi) or [vLLM](../../../third_parties/vllm).
|
||||
|
||||
## 🚀1. Start Microservice with Docker
|
||||
|
||||
### 1.1 Setup Environment Variables
|
||||
|
||||
In order to start FaqGen microservices, you need to setup the following environment variables first.
|
||||
|
||||
```bash
|
||||
export host_ip=${your_host_ip}
|
||||
export LLM_ENDPOINT_PORT=8008
|
||||
export FAQ_PORT=9000
|
||||
export HUGGINGFACEHUB_API_TOKEN=${your_hf_api_token}
|
||||
export LLM_ENDPOINT="http://${host_ip}:${LLM_ENDPOINT_PORT}"
|
||||
export LLM_MODEL_ID=${your_hf_llm_model}
|
||||
export FAQGen_COMPONENT_NAME="OPEAFAQGen_TGI" # or "vllm"
|
||||
```
|
||||
|
||||
### 1.2 Build Docker Image
|
||||
|
||||
Step 1: Prepare backend LLM docker image.
|
||||
|
||||
If you want to use vLLM backend, refer to [vLLM](../../../third_parties/vllm/src) to build vLLM docker images first.
|
||||
|
||||
No need for TGI.
|
||||
|
||||
Step 2: Build FaqGen docker image.
|
||||
|
||||
```bash
|
||||
cd ../../../../
|
||||
docker build -t opea/llm-faqgen:latest --build-arg https_proxy=$https_proxy --build-arg http_proxy=$http_proxy -f comps/llms/src/faq-generation/Dockerfile .
|
||||
```
|
||||
|
||||
### 1.3 Run Docker
|
||||
|
||||
To start a docker container, you have two options:
|
||||
|
||||
- A. Run Docker with CLI
|
||||
- B. Run Docker with Docker Compose
|
||||
|
||||
You can choose one as needed.
|
||||
|
||||
#### 1.3.1 Run Docker with CLI (Option A)
|
||||
|
||||
Step 1: Start the backend LLM service
|
||||
Please refer to [TGI](../../../third_parties/tgi/deployment/docker_compose/) or [vLLM](../../../third_parties/vllm/deployment/docker_compose/) guideline to start a backend LLM service.
|
||||
|
||||
Step 2: Start the FaqGen microservices
|
||||
|
||||
```bash
|
||||
docker run -d \
|
||||
--name="llm-faqgen-server" \
|
||||
-p 9000:9000 \
|
||||
--ipc=host \
|
||||
-e http_proxy=$http_proxy \
|
||||
-e https_proxy=$https_proxy \
|
||||
-e LLM_MODEL_ID=$LLM_MODEL_ID \
|
||||
-e LLM_ENDPOINT=$LLM_ENDPOINT \
|
||||
-e HUGGINGFACEHUB_API_TOKEN=$HUGGINGFACEHUB_API_TOKEN \
|
||||
-e FAQGen_COMPONENT_NAME=$FAQGen_COMPONENT_NAME \
|
||||
opea/llm-faqgen:latest
|
||||
```
|
||||
|
||||
#### 1.3.2 Run Docker with Docker Compose (Option B)
|
||||
|
||||
```bash
|
||||
cd ../../deployment/docker_compose/
|
||||
|
||||
# Backend is TGI on xeon
|
||||
docker compose -f faq-generation_tgi.yaml up -d
|
||||
|
||||
# Backend is TGI on gaudi
|
||||
# docker compose -f faq-generation_tgi_on_intel_hpu.yaml up -d
|
||||
|
||||
# Backend is vLLM on xeon
|
||||
# docker compose -f faq-generation_vllm.yaml up -d
|
||||
|
||||
# Backend is vLLM on gaudi
|
||||
# docker compose -f faq-generation_vllm_on_intel_hpu.yaml up -d
|
||||
```
|
||||
|
||||
## 🚀2. Consume LLM Service
|
||||
|
||||
### 2.1 Check Service Status
|
||||
|
||||
```bash
|
||||
curl http://${host_ip}:${FAQ_PORT}/v1/health_check\
|
||||
-X GET \
|
||||
-H 'Content-Type: application/json'
|
||||
```
|
||||
|
||||
### 2.2 Consume FAQGen LLM Service
|
||||
|
||||
```bash
|
||||
# Streaming Response
|
||||
# Set stream to True. Default will be True.
|
||||
curl http://${host_ip}:${FAQ_PORT}/v1/faqgen \
|
||||
-X POST \
|
||||
-d '{"query":"Text Embeddings Inference (TEI) is a toolkit for deploying and serving open source text embeddings and sequence classification models. TEI enables high-performance extraction for the most popular models, including FlagEmbedding, Ember, GTE and E5.","max_tokens": 128}' \
|
||||
-H 'Content-Type: application/json'
|
||||
|
||||
# Non-Streaming Response
|
||||
# Set stream to False.
|
||||
curl http://${host_ip}:${FAQ_PORT}/v1/faqgen \
|
||||
-X POST \
|
||||
-d '{"query":"Text Embeddings Inference (TEI) is a toolkit for deploying and serving open source text embeddings and sequence classification models. TEI enables high-performance extraction for the most popular models, including FlagEmbedding, Ember, GTE and E5.","max_tokens": 128, "stream":false}' \
|
||||
-H 'Content-Type: application/json'
|
||||
```
|
||||
@@ -5,4 +5,4 @@
|
||||
|
||||
pip --no-cache-dir install -r requirements-runtime.txt
|
||||
|
||||
python llm.py
|
||||
python opea_faqgen_microservice.py
|
||||
110
comps/llms/src/faq-generation/integrations/common.py
Normal file
110
comps/llms/src/faq-generation/integrations/common.py
Normal file
@@ -0,0 +1,110 @@
|
||||
# Copyright (C) 2024 Prediction Guard, Inc.
|
||||
# SPDX-License-Identified: Apache-2.0
|
||||
|
||||
import os
|
||||
|
||||
import requests
|
||||
from fastapi.responses import StreamingResponse
|
||||
from langchain.chains.summarize import load_summarize_chain
|
||||
from langchain.docstore.document import Document
|
||||
from langchain.text_splitter import CharacterTextSplitter
|
||||
from langchain_core.prompts import PromptTemplate
|
||||
|
||||
from comps import CustomLogger, GeneratedDoc, LLMParamsDoc, OpeaComponent, ServiceType
|
||||
from comps.cores.mega.utils import ConfigError, get_access_token, load_model_configs
|
||||
|
||||
logger = CustomLogger("opea_faqgen")
|
||||
logflag = os.getenv("LOGFLAG", False)
|
||||
|
||||
templ = """Create a concise FAQs (frequently asked questions and answers) for following text:
|
||||
TEXT: {text}
|
||||
Do not use any prefix or suffix to the FAQ.
|
||||
"""
|
||||
|
||||
# Environment variables
|
||||
MODEL_NAME = os.getenv("LLM_MODEL_ID")
|
||||
MODEL_CONFIGS = os.getenv("MODEL_CONFIGS")
|
||||
TOKEN_URL = os.getenv("TOKEN_URL")
|
||||
CLIENTID = os.getenv("CLIENTID")
|
||||
CLIENT_SECRET = os.getenv("CLIENT_SECRET")
|
||||
|
||||
if os.getenv("LLM_ENDPOINT") is not None:
|
||||
DEFAULT_ENDPOINT = os.getenv("LLM_ENDPOINT")
|
||||
elif os.getenv("TGI_LLM_ENDPOINT") is not None:
|
||||
DEFAULT_ENDPOINT = os.getenv("TGI_LLM_ENDPOINT")
|
||||
elif os.getenv("vLLM_ENDPOINT") is not None:
|
||||
DEFAULT_ENDPOINT = os.getenv("vLLM_ENDPOINT")
|
||||
else:
|
||||
DEFAULT_ENDPOINT = "http://localhost:8080"
|
||||
|
||||
|
||||
def get_llm_endpoint():
|
||||
if not MODEL_CONFIGS:
|
||||
return DEFAULT_ENDPOINT
|
||||
else:
|
||||
# Validate and Load the models config if MODEL_CONFIGS is not null
|
||||
configs_map = {}
|
||||
try:
|
||||
configs_map = load_model_configs(MODEL_CONFIGS)
|
||||
except ConfigError as e:
|
||||
logger.error(f"Failed to load model configurations: {e}")
|
||||
raise ConfigError(f"Failed to load model configurations: {e}")
|
||||
try:
|
||||
return configs_map.get(MODEL_NAME).get("endpoint")
|
||||
except ConfigError as e:
|
||||
logger.error(f"Input model {MODEL_NAME} not present in model_configs. Error {e}")
|
||||
raise ConfigError(f"Input model {MODEL_NAME} not present in model_configs")
|
||||
|
||||
|
||||
class OPEAFAQGen(OpeaComponent):
|
||||
"""A specialized OPEA FAQGen component derived from OpeaComponent.
|
||||
|
||||
Attributes:
|
||||
client (TGI/vLLM): An instance of the TGI/vLLM client for text generation.
|
||||
"""
|
||||
|
||||
def __init__(self, name: str, description: str, config: dict = None):
|
||||
super().__init__(name, ServiceType.LLM.name.lower(), description, config)
|
||||
self.access_token = (
|
||||
get_access_token(TOKEN_URL, CLIENTID, CLIENT_SECRET) if TOKEN_URL and CLIENTID and CLIENT_SECRET else None
|
||||
)
|
||||
self.text_splitter = CharacterTextSplitter()
|
||||
self.llm_endpoint = get_llm_endpoint()
|
||||
health_status = self.check_health()
|
||||
if not health_status:
|
||||
logger.error("OPEAFAQGen health check failed.")
|
||||
|
||||
async def generate(self, input: LLMParamsDoc, client):
|
||||
"""Invokes the TGI/vLLM LLM service to generate FAQ output for the provided input.
|
||||
|
||||
Args:
|
||||
input (LLMParamsDoc): The input text(s).
|
||||
client: TGI/vLLM based client
|
||||
"""
|
||||
PROMPT = PromptTemplate.from_template(templ)
|
||||
llm_chain = load_summarize_chain(llm=client, prompt=PROMPT)
|
||||
texts = self.text_splitter.split_text(input.query)
|
||||
|
||||
# Create multiple documents
|
||||
docs = [Document(page_content=t) for t in texts]
|
||||
|
||||
if input.stream:
|
||||
|
||||
async def stream_generator():
|
||||
from langserve.serialization import WellKnownLCSerializer
|
||||
|
||||
_serializer = WellKnownLCSerializer()
|
||||
async for chunk in llm_chain.astream_log(docs):
|
||||
data = _serializer.dumps({"ops": chunk.ops}).decode("utf-8")
|
||||
if logflag:
|
||||
logger.info(data)
|
||||
yield f"data: {data}\n\n"
|
||||
yield "data: [DONE]\n\n"
|
||||
|
||||
return StreamingResponse(stream_generator(), media_type="text/event-stream")
|
||||
else:
|
||||
response = await llm_chain.ainvoke(docs)
|
||||
response = response["output_text"]
|
||||
if logflag:
|
||||
logger.info(response)
|
||||
return GeneratedDoc(text=response, prompt=input.query)
|
||||
73
comps/llms/src/faq-generation/integrations/tgi.py
Normal file
73
comps/llms/src/faq-generation/integrations/tgi.py
Normal file
@@ -0,0 +1,73 @@
|
||||
# Copyright (C) 2024 Prediction Guard, Inc.
|
||||
# SPDX-License-Identified: Apache-2.0
|
||||
|
||||
import os
|
||||
|
||||
import requests
|
||||
from langchain_community.llms import HuggingFaceEndpoint
|
||||
|
||||
from comps import CustomLogger, GeneratedDoc, LLMParamsDoc, OpeaComponent, OpeaComponentRegistry, ServiceType
|
||||
|
||||
from .common import *
|
||||
|
||||
logger = CustomLogger("opea_faqgen_tgi")
|
||||
logflag = os.getenv("LOGFLAG", False)
|
||||
|
||||
|
||||
@OpeaComponentRegistry.register("OPEAFAQGen_TGI")
|
||||
class OPEAFAQGen_TGI(OPEAFAQGen):
|
||||
"""A specialized OPEA FAQGen TGI component derived from OPEAFAQGen for interacting with TGI services based on Lanchain HuggingFaceEndpoint API.
|
||||
|
||||
Attributes:
|
||||
client (TGI): An instance of the TGI client for text generation.
|
||||
"""
|
||||
|
||||
def check_health(self) -> bool:
|
||||
"""Checks the health of the TGI LLM service.
|
||||
|
||||
Returns:
|
||||
bool: True if the service is reachable and healthy, False otherwise.
|
||||
"""
|
||||
|
||||
try:
|
||||
# response = requests.get(f"{self.llm_endpoint}/health")
|
||||
|
||||
# Will remove after TGI gaudi fix health bug
|
||||
url = f"{self.llm_endpoint}/generate"
|
||||
data = {"inputs": "What is Deep Learning?", "parameters": {"max_new_tokens": 17}}
|
||||
headers = {"Content-Type": "application/json"}
|
||||
response = requests.post(url=url, json=data, headers=headers)
|
||||
|
||||
if response.status_code == 200:
|
||||
return True
|
||||
else:
|
||||
return False
|
||||
except Exception as e:
|
||||
logger.error(e)
|
||||
logger.error("Health check failed")
|
||||
return False
|
||||
|
||||
async def invoke(self, input: LLMParamsDoc):
|
||||
"""Invokes the TGI LLM service to generate FAQ output for the provided input.
|
||||
|
||||
Args:
|
||||
input (LLMParamsDoc): The input text(s).
|
||||
"""
|
||||
server_kwargs = {}
|
||||
if self.access_token:
|
||||
server_kwargs["headers"] = {"Authorization": f"Bearer {self.access_token}"}
|
||||
|
||||
self.client = HuggingFaceEndpoint(
|
||||
endpoint_url=self.llm_endpoint,
|
||||
max_new_tokens=input.max_tokens,
|
||||
top_k=input.top_k,
|
||||
top_p=input.top_p,
|
||||
typical_p=input.typical_p,
|
||||
temperature=input.temperature,
|
||||
repetition_penalty=input.repetition_penalty,
|
||||
streaming=input.stream,
|
||||
server_kwargs=server_kwargs,
|
||||
)
|
||||
result = await self.generate(input, self.client)
|
||||
|
||||
return result
|
||||
65
comps/llms/src/faq-generation/integrations/vllm.py
Normal file
65
comps/llms/src/faq-generation/integrations/vllm.py
Normal file
@@ -0,0 +1,65 @@
|
||||
# Copyright (C) 2024 Prediction Guard, Inc.
|
||||
# SPDX-License-Identified: Apache-2.0
|
||||
|
||||
import os
|
||||
|
||||
import requests
|
||||
from langchain_community.llms import VLLMOpenAI
|
||||
|
||||
from comps import CustomLogger, GeneratedDoc, LLMParamsDoc, OpeaComponent, OpeaComponentRegistry, ServiceType
|
||||
|
||||
from .common import *
|
||||
|
||||
logger = CustomLogger("opea_faqgen_vllm")
|
||||
logflag = os.getenv("LOGFLAG", False)
|
||||
|
||||
|
||||
@OpeaComponentRegistry.register("OPEAFAQGen_vLLM")
|
||||
class OPEAFAQGen_vLLM(OPEAFAQGen):
|
||||
"""A specialized OPEA FAQGen vLLM component derived from OPEAFAQGen for interacting with vLLM services based on Lanchain VLLMOpenAI API.
|
||||
|
||||
Attributes:
|
||||
client (vLLM): An instance of the vLLM client for text generation.
|
||||
"""
|
||||
|
||||
def check_health(self) -> bool:
|
||||
"""Checks the health of the vLLM LLM service.
|
||||
|
||||
Returns:
|
||||
bool: True if the service is reachable and healthy, False otherwise.
|
||||
"""
|
||||
|
||||
try:
|
||||
response = requests.get(f"{self.llm_endpoint}/health")
|
||||
if response.status_code == 200:
|
||||
return True
|
||||
else:
|
||||
return False
|
||||
except Exception as e:
|
||||
logger.error(e)
|
||||
logger.error("Health check failed")
|
||||
return False
|
||||
|
||||
async def invoke(self, input: LLMParamsDoc):
|
||||
"""Invokes the vLLM LLM service to generate FAQ output for the provided input.
|
||||
|
||||
Args:
|
||||
input (LLMParamsDoc): The input text(s).
|
||||
"""
|
||||
headers = {}
|
||||
if self.access_token:
|
||||
headers = {"Authorization": f"Bearer {self.access_token}"}
|
||||
|
||||
self.client = VLLMOpenAI(
|
||||
openai_api_key="EMPTY",
|
||||
openai_api_base=self.llm_endpoint + "/v1",
|
||||
model_name=MODEL_NAME,
|
||||
default_headers=headers,
|
||||
max_tokens=input.max_tokens,
|
||||
top_p=input.top_p,
|
||||
streaming=input.stream,
|
||||
temperature=input.temperature,
|
||||
)
|
||||
result = await self.generate(input, self.client)
|
||||
|
||||
return result
|
||||
58
comps/llms/src/faq-generation/opea_faqgen_microservice.py
Normal file
58
comps/llms/src/faq-generation/opea_faqgen_microservice.py
Normal file
@@ -0,0 +1,58 @@
|
||||
# Copyright (C) 2024 Intel Corporation
|
||||
# SPDX-License-Identifier: Apache-2.0
|
||||
|
||||
import os
|
||||
import time
|
||||
|
||||
from integrations.tgi import OPEAFAQGen_TGI
|
||||
from integrations.vllm import OPEAFAQGen_vLLM
|
||||
|
||||
from comps import (
|
||||
CustomLogger,
|
||||
LLMParamsDoc,
|
||||
OpeaComponentLoader,
|
||||
ServiceType,
|
||||
opea_microservices,
|
||||
register_microservice,
|
||||
register_statistics,
|
||||
statistics_dict,
|
||||
)
|
||||
|
||||
logger = CustomLogger("llm_faqgen")
|
||||
logflag = os.getenv("LOGFLAG", False)
|
||||
|
||||
llm_component_name = os.getenv("FAQGen_COMPONENT_NAME", "OPEAFAQGen_TGI")
|
||||
# Initialize OpeaComponentLoader
|
||||
loader = OpeaComponentLoader(llm_component_name, description=f"OPEA LLM FAQGen Component: {llm_component_name}")
|
||||
|
||||
|
||||
@register_microservice(
|
||||
name="opea_service@llm_faqgen",
|
||||
service_type=ServiceType.LLM,
|
||||
endpoint="/v1/faqgen",
|
||||
host="0.0.0.0",
|
||||
port=9000,
|
||||
)
|
||||
@register_statistics(names=["opea_service@llm_faqgen"])
|
||||
async def llm_generate(input: LLMParamsDoc):
|
||||
start = time.time()
|
||||
|
||||
# Log the input if logging is enabled
|
||||
if logflag:
|
||||
logger.info(input)
|
||||
|
||||
try:
|
||||
# Use the controller to invoke the active component
|
||||
response = await loader.invoke(input)
|
||||
# Record statistics
|
||||
statistics_dict["opea_service@llm_faqgen"].append_latency(time.time() - start, None)
|
||||
return response
|
||||
|
||||
except Exception as e:
|
||||
logger.error(f"Error during FaqGen invocation: {e}")
|
||||
raise
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
logger.info("OPEA FAQGen Microservice is starting...")
|
||||
opea_microservices["opea_service@llm_faqgen"].start()
|
||||
Reference in New Issue
Block a user