move examples gateway (#992)

Co-authored-by: root <root@idc708073.jf.intel.com>
Co-authored-by: pre-commit-ci[bot] <66853113+pre-commit-ci[bot]@users.noreply.github.com>
Co-authored-by: Sihan Chen <39623753+Spycsh@users.noreply.github.com>
This commit is contained in:
lkk
2024-12-06 14:40:25 +08:00
committed by GitHub
parent f5c08d4fbb
commit bde285dfce
17 changed files with 1236 additions and 113 deletions

View File

@@ -4,9 +4,11 @@
import asyncio
import os
from comps import AudioQnAGateway, MicroService, ServiceOrchestrator, ServiceType
from comps import Gateway, MegaServiceEndpoint, MicroService, ServiceOrchestrator, ServiceType
from comps.cores.proto.api_protocol import AudioChatCompletionRequest, ChatCompletionResponse
from comps.cores.proto.docarray import LLMParams
from fastapi import Request
MEGA_SERVICE_HOST_IP = os.getenv("MEGA_SERVICE_HOST_IP", "0.0.0.0")
MEGA_SERVICE_PORT = int(os.getenv("MEGA_SERVICE_PORT", 8888))
ASR_SERVICE_HOST_IP = os.getenv("ASR_SERVICE_HOST_IP", "0.0.0.0")
ASR_SERVICE_PORT = int(os.getenv("ASR_SERVICE_PORT", 9099))
@@ -16,7 +18,7 @@ TTS_SERVICE_HOST_IP = os.getenv("TTS_SERVICE_HOST_IP", "0.0.0.0")
TTS_SERVICE_PORT = int(os.getenv("TTS_SERVICE_PORT", 9088))
class AudioQnAService:
class AudioQnAService(Gateway):
def __init__(self, host="0.0.0.0", port=8000):
self.host = host
self.port = port
@@ -50,9 +52,43 @@ class AudioQnAService:
self.megaservice.add(asr).add(llm).add(tts)
self.megaservice.flow_to(asr, llm)
self.megaservice.flow_to(llm, tts)
self.gateway = AudioQnAGateway(megaservice=self.megaservice, host="0.0.0.0", port=self.port)
async def handle_request(self, request: Request):
data = await request.json()
chat_request = AudioChatCompletionRequest.parse_obj(data)
parameters = LLMParams(
# relatively lower max_tokens for audio conversation
max_tokens=chat_request.max_tokens if chat_request.max_tokens else 128,
top_k=chat_request.top_k if chat_request.top_k else 10,
top_p=chat_request.top_p if chat_request.top_p else 0.95,
temperature=chat_request.temperature if chat_request.temperature else 0.01,
frequency_penalty=chat_request.frequency_penalty if chat_request.frequency_penalty else 0.0,
presence_penalty=chat_request.presence_penalty if chat_request.presence_penalty else 0.0,
repetition_penalty=chat_request.repetition_penalty if chat_request.repetition_penalty else 1.03,
streaming=False, # TODO add streaming LLM output as input to TTS
)
result_dict, runtime_graph = await self.megaservice.schedule(
initial_inputs={"byte_str": chat_request.audio}, llm_parameters=parameters
)
last_node = runtime_graph.all_leaves()[-1]
response = result_dict[last_node]["byte_str"]
return response
def start(self):
super().__init__(
megaservice=self.megaservice,
host=self.host,
port=self.port,
endpoint=str(MegaServiceEndpoint.AUDIO_QNA),
input_datatype=AudioChatCompletionRequest,
output_datatype=ChatCompletionResponse,
)
if __name__ == "__main__":
audioqna = AudioQnAService(host=MEGA_SERVICE_HOST_IP, port=MEGA_SERVICE_PORT)
audioqna = AudioQnAService(port=MEGA_SERVICE_PORT)
audioqna.add_remote_service()
audioqna.start()

View File

@@ -5,9 +5,11 @@ import asyncio
import base64
import os
from comps import AudioQnAGateway, MicroService, ServiceOrchestrator, ServiceType
from comps import Gateway, MegaServiceEndpoint, MicroService, ServiceOrchestrator, ServiceType
from comps.cores.proto.api_protocol import AudioChatCompletionRequest, ChatCompletionResponse
from comps.cores.proto.docarray import LLMParams
from fastapi import Request
MEGA_SERVICE_HOST_IP = os.getenv("MEGA_SERVICE_HOST_IP", "0.0.0.0")
MEGA_SERVICE_PORT = int(os.getenv("MEGA_SERVICE_PORT", 8888))
WHISPER_SERVER_HOST_IP = os.getenv("WHISPER_SERVER_HOST_IP", "0.0.0.0")
@@ -52,7 +54,7 @@ def align_outputs(self, data, cur_node, inputs, runtime_graph, llm_parameters_di
return data
class AudioQnAService:
class AudioQnAService(Gateway):
def __init__(self, host="0.0.0.0", port=8000):
self.host = host
self.port = port
@@ -90,9 +92,43 @@ class AudioQnAService:
self.megaservice.add(asr).add(llm).add(tts)
self.megaservice.flow_to(asr, llm)
self.megaservice.flow_to(llm, tts)
self.gateway = AudioQnAGateway(megaservice=self.megaservice, host="0.0.0.0", port=self.port)
async def handle_request(self, request: Request):
data = await request.json()
chat_request = AudioChatCompletionRequest.parse_obj(data)
parameters = LLMParams(
# relatively lower max_tokens for audio conversation
max_tokens=chat_request.max_tokens if chat_request.max_tokens else 128,
top_k=chat_request.top_k if chat_request.top_k else 10,
top_p=chat_request.top_p if chat_request.top_p else 0.95,
temperature=chat_request.temperature if chat_request.temperature else 0.01,
frequency_penalty=chat_request.frequency_penalty if chat_request.frequency_penalty else 0.0,
presence_penalty=chat_request.presence_penalty if chat_request.presence_penalty else 0.0,
repetition_penalty=chat_request.repetition_penalty if chat_request.repetition_penalty else 1.03,
streaming=False, # TODO add streaming LLM output as input to TTS
)
result_dict, runtime_graph = await self.megaservice.schedule(
initial_inputs={"byte_str": chat_request.audio}, llm_parameters=parameters
)
last_node = runtime_graph.all_leaves()[-1]
response = result_dict[last_node]["byte_str"]
return response
def start(self):
super().__init__(
megaservice=self.megaservice,
host=self.host,
port=self.port,
endpoint=str(MegaServiceEndpoint.AUDIO_QNA),
input_datatype=AudioChatCompletionRequest,
output_datatype=ChatCompletionResponse,
)
if __name__ == "__main__":
audioqna = AudioQnAService(host=MEGA_SERVICE_HOST_IP, port=MEGA_SERVICE_PORT)
audioqna = AudioQnAService(port=MEGA_SERVICE_PORT)
audioqna.add_remote_service()
audioqna.start()

View File

@@ -5,9 +5,11 @@ import asyncio
import os
import sys
from comps import AvatarChatbotGateway, MicroService, ServiceOrchestrator, ServiceType
from comps import Gateway, MegaServiceEndpoint, MicroService, ServiceOrchestrator, ServiceType
from comps.cores.proto.api_protocol import AudioChatCompletionRequest, ChatCompletionResponse
from comps.cores.proto.docarray import LLMParams
from fastapi import Request
MEGA_SERVICE_HOST_IP = os.getenv("MEGA_SERVICE_HOST_IP", "0.0.0.0")
MEGA_SERVICE_PORT = int(os.getenv("MEGA_SERVICE_PORT", 8888))
ASR_SERVICE_HOST_IP = os.getenv("ASR_SERVICE_HOST_IP", "0.0.0.0")
ASR_SERVICE_PORT = int(os.getenv("ASR_SERVICE_PORT", 9099))
@@ -27,7 +29,7 @@ def check_env_vars(env_var_list):
print("All environment variables are set.")
class AvatarChatbotService:
class AvatarChatbotService(Gateway):
def __init__(self, host="0.0.0.0", port=8000):
self.host = host
self.port = port
@@ -70,7 +72,39 @@ class AvatarChatbotService:
self.megaservice.flow_to(asr, llm)
self.megaservice.flow_to(llm, tts)
self.megaservice.flow_to(tts, animation)
self.gateway = AvatarChatbotGateway(megaservice=self.megaservice, host="0.0.0.0", port=self.port)
async def handle_request(self, request: Request):
data = await request.json()
chat_request = AudioChatCompletionRequest.model_validate(data)
parameters = LLMParams(
# relatively lower max_tokens for audio conversation
max_tokens=chat_request.max_tokens if chat_request.max_tokens else 128,
top_k=chat_request.top_k if chat_request.top_k else 10,
top_p=chat_request.top_p if chat_request.top_p else 0.95,
temperature=chat_request.temperature if chat_request.temperature else 0.01,
repetition_penalty=chat_request.presence_penalty if chat_request.presence_penalty else 1.03,
streaming=False, # TODO add streaming LLM output as input to TTS
)
# print(parameters)
result_dict, runtime_graph = await self.megaservice.schedule(
initial_inputs={"byte_str": chat_request.audio}, llm_parameters=parameters
)
last_node = runtime_graph.all_leaves()[-1]
response = result_dict[last_node]["video_path"]
return response
def start(self):
super().__init__(
megaservice=self.megaservice,
host=self.host,
port=self.port,
endpoint=str(MegaServiceEndpoint.AVATAR_CHATBOT),
input_datatype=AudioChatCompletionRequest,
output_datatype=ChatCompletionResponse,
)
if __name__ == "__main__":
@@ -89,5 +123,6 @@ if __name__ == "__main__":
]
)
avatarchatbot = AvatarChatbotService(host=MEGA_SERVICE_HOST_IP, port=MEGA_SERVICE_PORT)
avatarchatbot = AvatarChatbotService(port=MEGA_SERVICE_PORT)
avatarchatbot.add_remote_service()
avatarchatbot.start()

View File

@@ -6,7 +6,17 @@ import json
import os
import re
from comps import ChatQnAGateway, MicroService, ServiceOrchestrator, ServiceType
from comps import Gateway, MegaServiceEndpoint, MicroService, ServiceOrchestrator, ServiceType
from comps.cores.proto.api_protocol import (
ChatCompletionRequest,
ChatCompletionResponse,
ChatCompletionResponseChoice,
ChatMessage,
UsageInfo,
)
from comps.cores.proto.docarray import LLMParams, RerankerParms, RetrieverParms
from fastapi import Request
from fastapi.responses import StreamingResponse
from langchain_core.prompts import PromptTemplate
@@ -35,7 +45,6 @@ If you don't know the answer to a question, please don't share false information
return template.format(context=context_str, question=question)
MEGA_SERVICE_HOST_IP = os.getenv("MEGA_SERVICE_HOST_IP", "0.0.0.0")
MEGA_SERVICE_PORT = int(os.getenv("MEGA_SERVICE_PORT", 8888))
GUARDRAIL_SERVICE_HOST_IP = os.getenv("GUARDRAIL_SERVICE_HOST_IP", "0.0.0.0")
GUARDRAIL_SERVICE_PORT = int(os.getenv("GUARDRAIL_SERVICE_PORT", 80))
@@ -178,13 +187,14 @@ def align_generator(self, gen, **kwargs):
yield "data: [DONE]\n\n"
class ChatQnAService:
class ChatQnAService(Gateway):
def __init__(self, host="0.0.0.0", port=8000):
self.host = host
self.port = port
ServiceOrchestrator.align_inputs = align_inputs
ServiceOrchestrator.align_outputs = align_outputs
ServiceOrchestrator.align_generator = align_generator
self.megaservice = ServiceOrchestrator()
def add_remote_service(self):
@@ -228,7 +238,6 @@ class ChatQnAService:
self.megaservice.flow_to(embedding, retriever)
self.megaservice.flow_to(retriever, rerank)
self.megaservice.flow_to(rerank, llm)
self.gateway = ChatQnAGateway(megaservice=self.megaservice, host="0.0.0.0", port=self.port)
def add_remote_service_without_rerank(self):
@@ -261,7 +270,6 @@ class ChatQnAService:
self.megaservice.add(embedding).add(retriever).add(llm)
self.megaservice.flow_to(embedding, retriever)
self.megaservice.flow_to(retriever, llm)
self.gateway = ChatQnAGateway(megaservice=self.megaservice, host="0.0.0.0", port=self.port)
def add_remote_service_with_guardrails(self):
guardrail_in = MicroService(
@@ -319,7 +327,66 @@ class ChatQnAService:
self.megaservice.flow_to(retriever, rerank)
self.megaservice.flow_to(rerank, llm)
# self.megaservice.flow_to(llm, guardrail_out)
self.gateway = ChatQnAGateway(megaservice=self.megaservice, host="0.0.0.0", port=self.port)
async def handle_request(self, request: Request):
data = await request.json()
stream_opt = data.get("stream", True)
chat_request = ChatCompletionRequest.parse_obj(data)
prompt = self._handle_message(chat_request.messages)
parameters = LLMParams(
max_tokens=chat_request.max_tokens if chat_request.max_tokens else 1024,
top_k=chat_request.top_k if chat_request.top_k else 10,
top_p=chat_request.top_p if chat_request.top_p else 0.95,
temperature=chat_request.temperature if chat_request.temperature else 0.01,
frequency_penalty=chat_request.frequency_penalty if chat_request.frequency_penalty else 0.0,
presence_penalty=chat_request.presence_penalty if chat_request.presence_penalty else 0.0,
repetition_penalty=chat_request.repetition_penalty if chat_request.repetition_penalty else 1.03,
streaming=stream_opt,
chat_template=chat_request.chat_template if chat_request.chat_template else None,
)
retriever_parameters = RetrieverParms(
search_type=chat_request.search_type if chat_request.search_type else "similarity",
k=chat_request.k if chat_request.k else 4,
distance_threshold=chat_request.distance_threshold if chat_request.distance_threshold else None,
fetch_k=chat_request.fetch_k if chat_request.fetch_k else 20,
lambda_mult=chat_request.lambda_mult if chat_request.lambda_mult else 0.5,
score_threshold=chat_request.score_threshold if chat_request.score_threshold else 0.2,
)
reranker_parameters = RerankerParms(
top_n=chat_request.top_n if chat_request.top_n else 1,
)
result_dict, runtime_graph = await self.megaservice.schedule(
initial_inputs={"text": prompt},
llm_parameters=parameters,
retriever_parameters=retriever_parameters,
reranker_parameters=reranker_parameters,
)
for node, response in result_dict.items():
if isinstance(response, StreamingResponse):
return response
last_node = runtime_graph.all_leaves()[-1]
response = result_dict[last_node]["text"]
choices = []
usage = UsageInfo()
choices.append(
ChatCompletionResponseChoice(
index=0,
message=ChatMessage(role="assistant", content=response),
finish_reason="stop",
)
)
return ChatCompletionResponse(model="chatqna", choices=choices, usage=usage)
def start(self):
super().__init__(
megaservice=self.megaservice,
host=self.host,
port=self.port,
endpoint=str(MegaServiceEndpoint.CHAT_QNA),
input_datatype=ChatCompletionRequest,
output_datatype=ChatCompletionResponse,
)
if __name__ == "__main__":
@@ -329,10 +396,12 @@ if __name__ == "__main__":
args = parser.parse_args()
chatqna = ChatQnAService(host=MEGA_SERVICE_HOST_IP, port=MEGA_SERVICE_PORT)
chatqna = ChatQnAService(port=MEGA_SERVICE_PORT)
if args.without_rerank:
chatqna.add_remote_service_without_rerank()
elif args.with_guardrails:
chatqna.add_remote_service_with_guardrails()
else:
chatqna.add_remote_service()
chatqna.start()

View File

@@ -3,7 +3,17 @@
import os
from comps import ChatQnAGateway, MicroService, ServiceOrchestrator, ServiceType
from comps import Gateway, MegaServiceEndpoint, MicroService, ServiceOrchestrator, ServiceType
from comps.cores.proto.api_protocol import (
ChatCompletionRequest,
ChatCompletionResponse,
ChatCompletionResponseChoice,
ChatMessage,
UsageInfo,
)
from comps.cores.proto.docarray import LLMParams, RerankerParms, RetrieverParms
from fastapi import Request
from fastapi.responses import StreamingResponse
MEGA_SERVICE_HOST_IP = os.getenv("MEGA_SERVICE_HOST_IP", "0.0.0.0")
MEGA_SERVICE_PORT = int(os.getenv("MEGA_SERVICE_PORT", 8888))
@@ -17,7 +27,7 @@ LLM_SERVICE_HOST_IP = os.getenv("LLM_SERVICE_HOST_IP", "0.0.0.0")
LLM_SERVICE_PORT = int(os.getenv("LLM_SERVICE_PORT", 9000))
class ChatQnAService:
class ChatQnAService(Gateway):
def __init__(self, host="0.0.0.0", port=8000):
self.host = host
self.port = port
@@ -60,9 +70,69 @@ class ChatQnAService:
self.megaservice.flow_to(embedding, retriever)
self.megaservice.flow_to(retriever, rerank)
self.megaservice.flow_to(rerank, llm)
self.gateway = ChatQnAGateway(megaservice=self.megaservice, host="0.0.0.0", port=self.port)
async def handle_request(self, request: Request):
data = await request.json()
stream_opt = data.get("stream", True)
chat_request = ChatCompletionRequest.parse_obj(data)
prompt = self._handle_message(chat_request.messages)
parameters = LLMParams(
max_tokens=chat_request.max_tokens if chat_request.max_tokens else 1024,
top_k=chat_request.top_k if chat_request.top_k else 10,
top_p=chat_request.top_p if chat_request.top_p else 0.95,
temperature=chat_request.temperature if chat_request.temperature else 0.01,
frequency_penalty=chat_request.frequency_penalty if chat_request.frequency_penalty else 0.0,
presence_penalty=chat_request.presence_penalty if chat_request.presence_penalty else 0.0,
repetition_penalty=chat_request.repetition_penalty if chat_request.repetition_penalty else 1.03,
streaming=stream_opt,
chat_template=chat_request.chat_template if chat_request.chat_template else None,
)
retriever_parameters = RetrieverParms(
search_type=chat_request.search_type if chat_request.search_type else "similarity",
k=chat_request.k if chat_request.k else 4,
distance_threshold=chat_request.distance_threshold if chat_request.distance_threshold else None,
fetch_k=chat_request.fetch_k if chat_request.fetch_k else 20,
lambda_mult=chat_request.lambda_mult if chat_request.lambda_mult else 0.5,
score_threshold=chat_request.score_threshold if chat_request.score_threshold else 0.2,
)
reranker_parameters = RerankerParms(
top_n=chat_request.top_n if chat_request.top_n else 1,
)
result_dict, runtime_graph = await self.megaservice.schedule(
initial_inputs={"text": prompt},
llm_parameters=parameters,
retriever_parameters=retriever_parameters,
reranker_parameters=reranker_parameters,
)
for node, response in result_dict.items():
if isinstance(response, StreamingResponse):
return response
last_node = runtime_graph.all_leaves()[-1]
response = result_dict[last_node]["text"]
choices = []
usage = UsageInfo()
choices.append(
ChatCompletionResponseChoice(
index=0,
message=ChatMessage(role="assistant", content=response),
finish_reason="stop",
)
)
return ChatCompletionResponse(model="chatqna", choices=choices, usage=usage)
def start(self):
super().__init__(
megaservice=self.megaservice,
host=self.host,
port=self.port,
endpoint=str(MegaServiceEndpoint.CHAT_QNA),
input_datatype=ChatCompletionRequest,
output_datatype=ChatCompletionResponse,
)
if __name__ == "__main__":
chatqna = ChatQnAService(host=MEGA_SERVICE_HOST_IP, port=MEGA_SERVICE_PORT)
chatqna = ChatQnAService(port=MEGA_SERVICE_PORT)
chatqna.add_remote_service()
chatqna.start()

View File

@@ -4,15 +4,24 @@
import asyncio
import os
from comps import CodeGenGateway, MicroService, ServiceOrchestrator, ServiceType
from comps import Gateway, MegaServiceEndpoint, MicroService, ServiceOrchestrator, ServiceType
from comps.cores.proto.api_protocol import (
ChatCompletionRequest,
ChatCompletionResponse,
ChatCompletionResponseChoice,
ChatMessage,
UsageInfo,
)
from comps.cores.proto.docarray import LLMParams
from fastapi import Request
from fastapi.responses import StreamingResponse
MEGA_SERVICE_HOST_IP = os.getenv("MEGA_SERVICE_HOST_IP", "0.0.0.0")
MEGA_SERVICE_PORT = int(os.getenv("MEGA_SERVICE_PORT", 7778))
LLM_SERVICE_HOST_IP = os.getenv("LLM_SERVICE_HOST_IP", "0.0.0.0")
LLM_SERVICE_PORT = int(os.getenv("LLM_SERVICE_PORT", 9000))
class CodeGenService:
class CodeGenService(Gateway):
def __init__(self, host="0.0.0.0", port=8000):
self.host = host
self.port = port
@@ -28,9 +37,58 @@ class CodeGenService:
service_type=ServiceType.LLM,
)
self.megaservice.add(llm)
self.gateway = CodeGenGateway(megaservice=self.megaservice, host="0.0.0.0", port=self.port)
async def handle_request(self, request: Request):
data = await request.json()
stream_opt = data.get("stream", True)
chat_request = ChatCompletionRequest.parse_obj(data)
prompt = self._handle_message(chat_request.messages)
parameters = LLMParams(
max_tokens=chat_request.max_tokens if chat_request.max_tokens else 1024,
top_k=chat_request.top_k if chat_request.top_k else 10,
top_p=chat_request.top_p if chat_request.top_p else 0.95,
temperature=chat_request.temperature if chat_request.temperature else 0.01,
frequency_penalty=chat_request.frequency_penalty if chat_request.frequency_penalty else 0.0,
presence_penalty=chat_request.presence_penalty if chat_request.presence_penalty else 0.0,
repetition_penalty=chat_request.repetition_penalty if chat_request.repetition_penalty else 1.03,
streaming=stream_opt,
)
result_dict, runtime_graph = await self.megaservice.schedule(
initial_inputs={"query": prompt}, llm_parameters=parameters
)
for node, response in result_dict.items():
# Here it suppose the last microservice in the megaservice is LLM.
if (
isinstance(response, StreamingResponse)
and node == list(self.megaservice.services.keys())[-1]
and self.megaservice.services[node].service_type == ServiceType.LLM
):
return response
last_node = runtime_graph.all_leaves()[-1]
response = result_dict[last_node]["text"]
choices = []
usage = UsageInfo()
choices.append(
ChatCompletionResponseChoice(
index=0,
message=ChatMessage(role="assistant", content=response),
finish_reason="stop",
)
)
return ChatCompletionResponse(model="codegen", choices=choices, usage=usage)
def start(self):
super().__init__(
megaservice=self.megaservice,
host=self.host,
port=self.port,
endpoint=str(MegaServiceEndpoint.CODE_GEN),
input_datatype=ChatCompletionRequest,
output_datatype=ChatCompletionResponse,
)
if __name__ == "__main__":
chatqna = CodeGenService(host=MEGA_SERVICE_HOST_IP, port=MEGA_SERVICE_PORT)
chatqna = CodeGenService(port=MEGA_SERVICE_PORT)
chatqna.add_remote_service()
chatqna.start()

View File

@@ -4,15 +4,23 @@
import asyncio
import os
from comps import CodeTransGateway, MicroService, ServiceOrchestrator
from comps import Gateway, MegaServiceEndpoint, MicroService, ServiceOrchestrator, ServiceType
from comps.cores.proto.api_protocol import (
ChatCompletionRequest,
ChatCompletionResponse,
ChatCompletionResponseChoice,
ChatMessage,
UsageInfo,
)
from fastapi import Request
from fastapi.responses import StreamingResponse
MEGA_SERVICE_HOST_IP = os.getenv("MEGA_SERVICE_HOST_IP", "0.0.0.0")
MEGA_SERVICE_PORT = int(os.getenv("MEGA_SERVICE_PORT", 7777))
LLM_SERVICE_HOST_IP = os.getenv("LLM_SERVICE_HOST_IP", "0.0.0.0")
LLM_SERVICE_PORT = int(os.getenv("LLM_SERVICE_PORT", 9000))
class CodeTransService:
class CodeTransService(Gateway):
def __init__(self, host="0.0.0.0", port=8000):
self.host = host
self.port = port
@@ -27,9 +35,59 @@ class CodeTransService:
use_remote_service=True,
)
self.megaservice.add(llm)
self.gateway = CodeTransGateway(megaservice=self.megaservice, host="0.0.0.0", port=self.port)
async def handle_request(self, request: Request):
data = await request.json()
language_from = data["language_from"]
language_to = data["language_to"]
source_code = data["source_code"]
prompt_template = """
### System: Please translate the following {language_from} codes into {language_to} codes.
### Original codes:
'''{language_from}
{source_code}
'''
### Translated codes:
"""
prompt = prompt_template.format(language_from=language_from, language_to=language_to, source_code=source_code)
result_dict, runtime_graph = await self.megaservice.schedule(initial_inputs={"query": prompt})
for node, response in result_dict.items():
# Here it suppose the last microservice in the megaservice is LLM.
if (
isinstance(response, StreamingResponse)
and node == list(self.megaservice.services.keys())[-1]
and self.megaservice.services[node].service_type == ServiceType.LLM
):
return response
last_node = runtime_graph.all_leaves()[-1]
response = result_dict[last_node]["text"]
choices = []
usage = UsageInfo()
choices.append(
ChatCompletionResponseChoice(
index=0,
message=ChatMessage(role="assistant", content=response),
finish_reason="stop",
)
)
return ChatCompletionResponse(model="codetrans", choices=choices, usage=usage)
def start(self):
super().__init__(
megaservice=self.megaservice,
host=self.host,
port=self.port,
endpoint=str(MegaServiceEndpoint.CODE_TRANS),
input_datatype=ChatCompletionRequest,
output_datatype=ChatCompletionResponse,
)
if __name__ == "__main__":
service_ochestrator = CodeTransService(host=MEGA_SERVICE_HOST_IP, port=MEGA_SERVICE_PORT)
service_ochestrator = CodeTransService(port=MEGA_SERVICE_PORT)
service_ochestrator.add_remote_service()
service_ochestrator.start()

View File

@@ -3,10 +3,14 @@
import asyncio
import os
from typing import Union
from comps import MicroService, RetrievalToolGateway, ServiceOrchestrator, ServiceType
from comps import Gateway, MegaServiceEndpoint, MicroService, ServiceOrchestrator, ServiceType
from comps.cores.proto.api_protocol import ChatCompletionRequest, EmbeddingRequest
from comps.cores.proto.docarray import LLMParamsDoc, RerankedDoc, RerankerParms, RetrieverParms, TextDoc
from fastapi import Request
from fastapi.responses import StreamingResponse
MEGA_SERVICE_HOST_IP = os.getenv("MEGA_SERVICE_HOST_IP", "0.0.0.0")
MEGA_SERVICE_PORT = os.getenv("MEGA_SERVICE_PORT", 8889)
EMBEDDING_SERVICE_HOST_IP = os.getenv("EMBEDDING_SERVICE_HOST_IP", "0.0.0.0")
EMBEDDING_SERVICE_PORT = os.getenv("EMBEDDING_SERVICE_PORT", 6000)
@@ -16,7 +20,7 @@ RERANK_SERVICE_HOST_IP = os.getenv("RERANK_SERVICE_HOST_IP", "0.0.0.0")
RERANK_SERVICE_PORT = os.getenv("RERANK_SERVICE_PORT", 8000)
class RetrievalToolService:
class RetrievalToolService(Gateway):
def __init__(self, host="0.0.0.0", port=8000):
self.host = host
self.port = port
@@ -51,9 +55,77 @@ class RetrievalToolService:
self.megaservice.add(embedding).add(retriever).add(rerank)
self.megaservice.flow_to(embedding, retriever)
self.megaservice.flow_to(retriever, rerank)
self.gateway = RetrievalToolGateway(megaservice=self.megaservice, host="0.0.0.0", port=self.port)
async def handle_request(self, request: Request):
def parser_input(data, TypeClass, key):
chat_request = None
try:
chat_request = TypeClass.parse_obj(data)
query = getattr(chat_request, key)
except:
query = None
return query, chat_request
data = await request.json()
query = None
for key, TypeClass in zip(["text", "input", "messages"], [TextDoc, EmbeddingRequest, ChatCompletionRequest]):
query, chat_request = parser_input(data, TypeClass, key)
if query is not None:
break
if query is None:
raise ValueError(f"Unknown request type: {data}")
if chat_request is None:
raise ValueError(f"Unknown request type: {data}")
if isinstance(chat_request, ChatCompletionRequest):
retriever_parameters = RetrieverParms(
search_type=chat_request.search_type if chat_request.search_type else "similarity",
k=chat_request.k if chat_request.k else 4,
distance_threshold=chat_request.distance_threshold if chat_request.distance_threshold else None,
fetch_k=chat_request.fetch_k if chat_request.fetch_k else 20,
lambda_mult=chat_request.lambda_mult if chat_request.lambda_mult else 0.5,
score_threshold=chat_request.score_threshold if chat_request.score_threshold else 0.2,
)
reranker_parameters = RerankerParms(
top_n=chat_request.top_n if chat_request.top_n else 1,
)
initial_inputs = {
"messages": query,
"input": query, # has to be input due to embedding expects either input or text
"search_type": chat_request.search_type if chat_request.search_type else "similarity",
"k": chat_request.k if chat_request.k else 4,
"distance_threshold": chat_request.distance_threshold if chat_request.distance_threshold else None,
"fetch_k": chat_request.fetch_k if chat_request.fetch_k else 20,
"lambda_mult": chat_request.lambda_mult if chat_request.lambda_mult else 0.5,
"score_threshold": chat_request.score_threshold if chat_request.score_threshold else 0.2,
"top_n": chat_request.top_n if chat_request.top_n else 1,
}
result_dict, runtime_graph = await self.megaservice.schedule(
initial_inputs=initial_inputs,
retriever_parameters=retriever_parameters,
reranker_parameters=reranker_parameters,
)
else:
result_dict, runtime_graph = await self.megaservice.schedule(initial_inputs={"text": query})
last_node = runtime_graph.all_leaves()[-1]
response = result_dict[last_node]
return response
def start(self):
super().__init__(
megaservice=self.megaservice,
host=self.host,
port=self.port,
endpoint=str(MegaServiceEndpoint.RETRIEVALTOOL),
input_datatype=Union[TextDoc, EmbeddingRequest, ChatCompletionRequest],
output_datatype=Union[RerankedDoc, LLMParamsDoc],
)
if __name__ == "__main__":
chatqna = RetrievalToolService(host=MEGA_SERVICE_HOST_IP, port=MEGA_SERVICE_PORT)
chatqna = RetrievalToolService(port=MEGA_SERVICE_PORT)
chatqna.add_remote_service()
chatqna.start()

View File

@@ -3,10 +3,21 @@
import asyncio
import os
from typing import List
from comps import DocSumGateway, MicroService, ServiceOrchestrator, ServiceType
from comps import Gateway, MegaServiceEndpoint, MicroService, ServiceOrchestrator, ServiceType
from comps.cores.mega.gateway import read_text_from_file
from comps.cores.proto.api_protocol import (
ChatCompletionRequest,
ChatCompletionResponse,
ChatCompletionResponseChoice,
ChatMessage,
UsageInfo,
)
from comps.cores.proto.docarray import LLMParams
from fastapi import File, Request, UploadFile
from fastapi.responses import StreamingResponse
MEGA_SERVICE_HOST_IP = os.getenv("MEGA_SERVICE_HOST_IP", "0.0.0.0")
MEGA_SERVICE_PORT = int(os.getenv("MEGA_SERVICE_PORT", 8888))
DATA_SERVICE_HOST_IP = os.getenv("DATA_SERVICE_HOST_IP", "0.0.0.0")
@@ -16,7 +27,7 @@ LLM_SERVICE_HOST_IP = os.getenv("LLM_SERVICE_HOST_IP", "0.0.0.0")
LLM_SERVICE_PORT = int(os.getenv("LLM_SERVICE_PORT", 9000))
class DocSumService:
class DocSumService(Gateway):
def __init__(self, host="0.0.0.0", port=8000):
self.host = host
self.port = port
@@ -41,12 +52,114 @@ class DocSumService:
use_remote_service=True,
service_type=ServiceType.LLM,
)
self.megaservice.add(llm)
self.megaservice.add(data).add(llm)
self.megaservice.flow_to(data, llm)
self.gateway = DocSumGateway(megaservice=self.megaservice, host="0.0.0.0", port=self.port)
async def handle_request(self, request: Request, files: List[UploadFile] = File(default=None)):
if "application/json" in request.headers.get("content-type"):
data = await request.json()
stream_opt = data.get("stream", True)
chat_request = ChatCompletionRequest.model_validate(data)
prompt = self._handle_message(chat_request.messages)
initial_inputs_data = {data["type"]: prompt}
elif "multipart/form-data" in request.headers.get("content-type"):
data = await request.form()
stream_opt = data.get("stream", True)
chat_request = ChatCompletionRequest.model_validate(data)
data_type = data.get("type")
file_summaries = []
if files:
for file in files:
file_path = f"/tmp/{file.filename}"
if data_type is not None and data_type in ["audio", "video"]:
raise ValueError(
"Audio and Video file uploads are not supported in docsum with curl request, please use the UI."
)
else:
import aiofiles
async with aiofiles.open(file_path, "wb") as f:
await f.write(await file.read())
docs = read_text_from_file(file, file_path)
os.remove(file_path)
if isinstance(docs, list):
file_summaries.extend(docs)
else:
file_summaries.append(docs)
if file_summaries:
prompt = self._handle_message(chat_request.messages) + "\n".join(file_summaries)
else:
prompt = self._handle_message(chat_request.messages)
data_type = data.get("type")
if data_type is not None:
initial_inputs_data = {}
initial_inputs_data[data_type] = prompt
else:
initial_inputs_data = {"query": prompt}
else:
raise ValueError(f"Unknown request type: {request.headers.get('content-type')}")
parameters = LLMParams(
max_tokens=chat_request.max_tokens if chat_request.max_tokens else 1024,
top_k=chat_request.top_k if chat_request.top_k else 10,
top_p=chat_request.top_p if chat_request.top_p else 0.95,
temperature=chat_request.temperature if chat_request.temperature else 0.01,
frequency_penalty=chat_request.frequency_penalty if chat_request.frequency_penalty else 0.0,
presence_penalty=chat_request.presence_penalty if chat_request.presence_penalty else 0.0,
repetition_penalty=chat_request.repetition_penalty if chat_request.repetition_penalty else 1.03,
streaming=stream_opt,
model=chat_request.model if chat_request.model else None,
language=chat_request.language if chat_request.language else "auto",
)
result_dict, runtime_graph = await self.megaservice.schedule(
initial_inputs=initial_inputs_data, llm_parameters=parameters
)
for node, response in result_dict.items():
# Here it suppose the last microservice in the megaservice is LLM.
if (
isinstance(response, StreamingResponse)
and node == list(self.megaservice.services.keys())[-1]
and self.megaservice.services[node].service_type == ServiceType.LLM
):
return response
last_node = runtime_graph.all_leaves()[-1]
response = result_dict[last_node]["text"]
choices = []
usage = UsageInfo()
choices.append(
ChatCompletionResponseChoice(
index=0,
message=ChatMessage(role="assistant", content=response),
finish_reason="stop",
)
)
return ChatCompletionResponse(model="docsum", choices=choices, usage=usage)
def start(self):
super().__init__(
megaservice=self.megaservice,
host=self.host,
port=self.port,
endpoint=str(MegaServiceEndpoint.DOC_SUMMARY),
input_datatype=ChatCompletionRequest,
output_datatype=ChatCompletionResponse,
)
if __name__ == "__main__":
docsum = DocSumService(host=MEGA_SERVICE_HOST_IP, port=MEGA_SERVICE_PORT)
docsum = DocSumService(port=MEGA_SERVICE_PORT)
docsum.add_remote_service()
docsum.start()

View File

@@ -5,7 +5,6 @@ import os
from comps import MicroService, ServiceOrchestrator, ServiceType
MEGA_SERVICE_HOST_IP = os.getenv("MEGA_SERVICE_HOST_IP", "127.0.0.1")
MEGA_SERVICE_PORT = int(os.getenv("MEGA_SERVICE_PORT", 16011))
PIPELINE_SERVICE_HOST_IP = os.getenv("PIPELINE_SERVICE_HOST_IP", "127.0.0.1")
PIPELINE_SERVICE_PORT = int(os.getenv("PIPELINE_SERVICE_PORT", 16010))
@@ -23,11 +22,22 @@ from fastapi import Request
from fastapi.responses import StreamingResponse
class EdgeCraftRagGateway(Gateway):
def __init__(self, megaservice, host="0.0.0.0", port=16011):
super().__init__(
megaservice, host, port, str(MegaServiceEndpoint.CHAT_QNA), ChatCompletionRequest, ChatCompletionResponse
class EdgeCraftRagService(Gateway):
def __init__(self, host="0.0.0.0", port=16010):
self.host = host
self.port = port
self.megaservice = ServiceOrchestrator()
def add_remote_service(self):
edgecraftrag = MicroService(
name="pipeline",
host=PIPELINE_SERVICE_HOST_IP,
port=PIPELINE_SERVICE_PORT,
endpoint="/v1/chatqna",
use_remote_service=True,
service_type=ServiceType.LLM,
)
self.megaservice.add(edgecraftrag)
async def handle_request(self, request: Request):
input = await request.json()
@@ -61,26 +71,18 @@ class EdgeCraftRagGateway(Gateway):
)
return ChatCompletionResponse(model="edgecraftrag", choices=choices, usage=usage)
class EdgeCraftRagService:
def __init__(self, host="0.0.0.0", port=16010):
self.host = host
self.port = port
self.megaservice = ServiceOrchestrator()
def add_remote_service(self):
edgecraftrag = MicroService(
name="pipeline",
host=PIPELINE_SERVICE_HOST_IP,
port=PIPELINE_SERVICE_PORT,
endpoint="/v1/chatqna",
use_remote_service=True,
service_type=ServiceType.LLM,
def start(self):
super().__init__(
megaservice=self.megaservice,
host=self.host,
port=self.port,
endpoint=str(MegaServiceEndpoint.CHAT_QNA),
input_datatype=ChatCompletionRequest,
output_datatype=ChatCompletionResponse,
)
self.megaservice.add(edgecraftrag)
self.gateway = EdgeCraftRagGateway(megaservice=self.megaservice, host="0.0.0.0", port=self.port)
if __name__ == "__main__":
edgecraftrag = EdgeCraftRagService(host=MEGA_SERVICE_HOST_IP, port=MEGA_SERVICE_PORT)
edgecraftrag = EdgeCraftRagService(port=MEGA_SERVICE_PORT)
edgecraftrag.add_remote_service()
edgecraftrag.start()

View File

@@ -3,16 +3,27 @@
import asyncio
import os
from typing import List
from comps import FaqGenGateway, MicroService, ServiceOrchestrator, ServiceType
from comps import Gateway, MegaServiceEndpoint, MicroService, ServiceOrchestrator, ServiceType
from comps.cores.mega.gateway import read_text_from_file
from comps.cores.proto.api_protocol import (
ChatCompletionRequest,
ChatCompletionResponse,
ChatCompletionResponseChoice,
ChatMessage,
UsageInfo,
)
from comps.cores.proto.docarray import LLMParams
from fastapi import File, Request, UploadFile
from fastapi.responses import StreamingResponse
MEGA_SERVICE_HOST_IP = os.getenv("MEGA_SERVICE_HOST_IP", "0.0.0.0")
MEGA_SERVICE_PORT = int(os.getenv("MEGA_SERVICE_PORT", 8888))
LLM_SERVICE_HOST_IP = os.getenv("LLM_SERVICE_HOST_IP", "0.0.0.0")
LLM_SERVICE_PORT = int(os.getenv("LLM_SERVICE_PORT", 9000))
class FaqGenService:
class FaqGenService(Gateway):
def __init__(self, host="0.0.0.0", port=8000):
self.host = host
self.port = port
@@ -28,9 +39,79 @@ class FaqGenService:
service_type=ServiceType.LLM,
)
self.megaservice.add(llm)
self.gateway = FaqGenGateway(megaservice=self.megaservice, host="0.0.0.0", port=self.port)
async def handle_request(self, request: Request, files: List[UploadFile] = File(default=None)):
data = await request.form()
stream_opt = data.get("stream", True)
chat_request = ChatCompletionRequest.parse_obj(data)
file_summaries = []
if files:
for file in files:
file_path = f"/tmp/{file.filename}"
import aiofiles
async with aiofiles.open(file_path, "wb") as f:
await f.write(await file.read())
docs = read_text_from_file(file, file_path)
os.remove(file_path)
if isinstance(docs, list):
file_summaries.extend(docs)
else:
file_summaries.append(docs)
if file_summaries:
prompt = self._handle_message(chat_request.messages) + "\n".join(file_summaries)
else:
prompt = self._handle_message(chat_request.messages)
parameters = LLMParams(
max_tokens=chat_request.max_tokens if chat_request.max_tokens else 1024,
top_k=chat_request.top_k if chat_request.top_k else 10,
top_p=chat_request.top_p if chat_request.top_p else 0.95,
temperature=chat_request.temperature if chat_request.temperature else 0.01,
frequency_penalty=chat_request.frequency_penalty if chat_request.frequency_penalty else 0.0,
presence_penalty=chat_request.presence_penalty if chat_request.presence_penalty else 0.0,
repetition_penalty=chat_request.repetition_penalty if chat_request.repetition_penalty else 1.03,
streaming=stream_opt,
model=chat_request.model if chat_request.model else None,
)
result_dict, runtime_graph = await self.megaservice.schedule(
initial_inputs={"query": prompt}, llm_parameters=parameters
)
for node, response in result_dict.items():
# Here it suppose the last microservice in the megaservice is LLM.
if (
isinstance(response, StreamingResponse)
and node == list(self.megaservice.services.keys())[-1]
and self.megaservice.services[node].service_type == ServiceType.LLM
):
return response
last_node = runtime_graph.all_leaves()[-1]
response = result_dict[last_node]["text"]
choices = []
usage = UsageInfo()
choices.append(
ChatCompletionResponseChoice(
index=0,
message=ChatMessage(role="assistant", content=response),
finish_reason="stop",
)
)
return ChatCompletionResponse(model="faqgen", choices=choices, usage=usage)
def start(self):
super().__init__(
megaservice=self.megaservice,
host=self.host,
port=self.port,
endpoint=str(MegaServiceEndpoint.FAQ_GEN),
input_datatype=ChatCompletionRequest,
output_datatype=ChatCompletionResponse,
)
if __name__ == "__main__":
faqgen = FaqGenService(host=MEGA_SERVICE_HOST_IP, port=MEGA_SERVICE_PORT)
faqgen = FaqGenService(port=MEGA_SERVICE_PORT)
faqgen.add_remote_service()
faqgen.start()

View File

@@ -6,7 +6,18 @@ import json
import os
import re
from comps import GraphragGateway, MicroService, ServiceOrchestrator, ServiceType
from comps import Gateway, MegaServiceEndpoint, MicroService, ServiceOrchestrator, ServiceType
from comps.cores.proto.api_protocol import (
ChatCompletionRequest,
ChatCompletionResponse,
ChatCompletionResponseChoice,
ChatMessage,
EmbeddingRequest,
UsageInfo,
)
from comps.cores.proto.docarray import LLMParams, RetrieverParms, TextDoc
from fastapi import Request
from fastapi.responses import StreamingResponse
from langchain_core.prompts import PromptTemplate
@@ -35,7 +46,6 @@ If you don't know the answer to a question, please don't share false information
return template.format(context=context_str, question=question)
MEGA_SERVICE_HOST_IP = os.getenv("MEGA_SERVICE_HOST_IP", "0.0.0.0")
MEGA_SERVICE_PORT = int(os.getenv("MEGA_SERVICE_PORT", 8888))
RETRIEVER_SERVICE_HOST_IP = os.getenv("RETRIEVER_SERVICE_HOST_IP", "0.0.0.0")
RETRIEVER_SERVICE_PORT = int(os.getenv("RETRIEVER_SERVICE_PORT", 7000))
@@ -117,7 +127,7 @@ def align_generator(self, gen, **kwargs):
yield "data: [DONE]\n\n"
class GraphRAGService:
class GraphRAGService(Gateway):
def __init__(self, host="0.0.0.0", port=8000):
self.host = host
self.port = port
@@ -146,9 +156,84 @@ class GraphRAGService:
)
self.megaservice.add(retriever).add(llm)
self.megaservice.flow_to(retriever, llm)
self.gateway = GraphragGateway(megaservice=self.megaservice, host="0.0.0.0", port=self.port)
async def handle_request(self, request: Request):
data = await request.json()
stream_opt = data.get("stream", True)
chat_request = ChatCompletionRequest.parse_obj(data)
def parser_input(data, TypeClass, key):
chat_request = None
try:
chat_request = TypeClass.parse_obj(data)
query = getattr(chat_request, key)
except:
query = None
return query, chat_request
query = None
for key, TypeClass in zip(["text", "input", "messages"], [TextDoc, EmbeddingRequest, ChatCompletionRequest]):
query, chat_request = parser_input(data, TypeClass, key)
if query is not None:
break
if query is None:
raise ValueError(f"Unknown request type: {data}")
if chat_request is None:
raise ValueError(f"Unknown request type: {data}")
prompt = self._handle_message(chat_request.messages)
parameters = LLMParams(
max_tokens=chat_request.max_tokens if chat_request.max_tokens else 1024,
top_k=chat_request.top_k if chat_request.top_k else 10,
top_p=chat_request.top_p if chat_request.top_p else 0.95,
temperature=chat_request.temperature if chat_request.temperature else 0.01,
frequency_penalty=chat_request.frequency_penalty if chat_request.frequency_penalty else 0.0,
presence_penalty=chat_request.presence_penalty if chat_request.presence_penalty else 0.0,
repetition_penalty=chat_request.repetition_penalty if chat_request.repetition_penalty else 1.03,
streaming=stream_opt,
chat_template=chat_request.chat_template if chat_request.chat_template else None,
)
retriever_parameters = RetrieverParms(
search_type=chat_request.search_type if chat_request.search_type else "similarity",
k=chat_request.k if chat_request.k else 4,
distance_threshold=chat_request.distance_threshold if chat_request.distance_threshold else None,
fetch_k=chat_request.fetch_k if chat_request.fetch_k else 20,
lambda_mult=chat_request.lambda_mult if chat_request.lambda_mult else 0.5,
score_threshold=chat_request.score_threshold if chat_request.score_threshold else 0.2,
)
initial_inputs = chat_request
result_dict, runtime_graph = await self.megaservice.schedule(
initial_inputs=initial_inputs,
llm_parameters=parameters,
retriever_parameters=retriever_parameters,
)
for node, response in result_dict.items():
if isinstance(response, StreamingResponse):
return response
last_node = runtime_graph.all_leaves()[-1]
response_content = result_dict[last_node]["choices"][0]["message"]["content"]
choices = []
usage = UsageInfo()
choices.append(
ChatCompletionResponseChoice(
index=0,
message=ChatMessage(role="assistant", content=response_content),
finish_reason="stop",
)
)
return ChatCompletionResponse(model="chatqna", choices=choices, usage=usage)
def start(self):
super().__init__(
megaservice=self.megaservice,
host=self.host,
port=self.port,
endpoint=str(MegaServiceEndpoint.GRAPH_RAG),
input_datatype=ChatCompletionRequest,
output_datatype=ChatCompletionResponse,
)
if __name__ == "__main__":
graphrag = GraphRAGService(host=MEGA_SERVICE_HOST_IP, port=MEGA_SERVICE_PORT)
graphrag = GraphRAGService(port=MEGA_SERVICE_PORT)
graphrag.add_remote_service()
graphrag.start()

View File

@@ -1,11 +1,24 @@
# Copyright (C) 2024 Intel Corporation
# SPDX-License-Identifier: Apache-2.0
import base64
import os
from io import BytesIO
from comps import MicroService, MultimodalQnAGateway, ServiceOrchestrator, ServiceType
import requests
from comps import Gateway, MegaServiceEndpoint, MicroService, ServiceOrchestrator, ServiceType
from comps.cores.proto.api_protocol import (
ChatCompletionRequest,
ChatCompletionResponse,
ChatCompletionResponseChoice,
ChatMessage,
UsageInfo,
)
from comps.cores.proto.docarray import LLMParams
from fastapi import Request
from fastapi.responses import StreamingResponse
from PIL import Image
MEGA_SERVICE_HOST_IP = os.getenv("MEGA_SERVICE_HOST_IP", "0.0.0.0")
MEGA_SERVICE_PORT = int(os.getenv("MEGA_SERVICE_PORT", 8888))
MM_EMBEDDING_SERVICE_HOST_IP = os.getenv("MM_EMBEDDING_SERVICE_HOST_IP", "0.0.0.0")
MM_EMBEDDING_PORT_MICROSERVICE = int(os.getenv("MM_EMBEDDING_PORT_MICROSERVICE", 6000))
@@ -15,12 +28,12 @@ LVM_SERVICE_HOST_IP = os.getenv("LVM_SERVICE_HOST_IP", "0.0.0.0")
LVM_SERVICE_PORT = int(os.getenv("LVM_SERVICE_PORT", 9399))
class MultimodalQnAService:
class MultimodalQnAService(Gateway):
def __init__(self, host="0.0.0.0", port=8000):
self.host = host
self.port = port
self.mmrag_megaservice = ServiceOrchestrator()
self.lvm_megaservice = ServiceOrchestrator()
self.megaservice = ServiceOrchestrator()
def add_remote_service(self):
mm_embedding = MicroService(
@@ -50,21 +63,186 @@ class MultimodalQnAService:
)
# for mmrag megaservice
self.mmrag_megaservice.add(mm_embedding).add(mm_retriever).add(lvm)
self.mmrag_megaservice.flow_to(mm_embedding, mm_retriever)
self.mmrag_megaservice.flow_to(mm_retriever, lvm)
self.megaservice.add(mm_embedding).add(mm_retriever).add(lvm)
self.megaservice.flow_to(mm_embedding, mm_retriever)
self.megaservice.flow_to(mm_retriever, lvm)
# for lvm megaservice
self.lvm_megaservice.add(lvm)
self.gateway = MultimodalQnAGateway(
multimodal_rag_megaservice=self.mmrag_megaservice,
lvm_megaservice=self.lvm_megaservice,
host="0.0.0.0",
# this overrides _handle_message method of Gateway
def _handle_message(self, messages):
images = []
messages_dicts = []
if isinstance(messages, str):
prompt = messages
else:
messages_dict = {}
system_prompt = ""
prompt = ""
for message in messages:
msg_role = message["role"]
messages_dict = {}
if msg_role == "system":
system_prompt = message["content"]
elif msg_role == "user":
if type(message["content"]) == list:
text = ""
text_list = [item["text"] for item in message["content"] if item["type"] == "text"]
text += "\n".join(text_list)
image_list = [
item["image_url"]["url"] for item in message["content"] if item["type"] == "image_url"
]
if image_list:
messages_dict[msg_role] = (text, image_list)
else:
messages_dict[msg_role] = text
else:
messages_dict[msg_role] = message["content"]
messages_dicts.append(messages_dict)
elif msg_role == "assistant":
messages_dict[msg_role] = message["content"]
messages_dicts.append(messages_dict)
else:
raise ValueError(f"Unknown role: {msg_role}")
if system_prompt:
prompt = system_prompt + "\n"
for messages_dict in messages_dicts:
for i, (role, message) in enumerate(messages_dict.items()):
if isinstance(message, tuple):
text, image_list = message
if i == 0:
# do not add role for the very first message.
# this will be added by llava_server
if text:
prompt += text + "\n"
else:
if text:
prompt += role.upper() + ": " + text + "\n"
else:
prompt += role.upper() + ":"
for img in image_list:
# URL
if img.startswith("http://") or img.startswith("https://"):
response = requests.get(img)
image = Image.open(BytesIO(response.content)).convert("RGBA")
image_bytes = BytesIO()
image.save(image_bytes, format="PNG")
img_b64_str = base64.b64encode(image_bytes.getvalue()).decode()
# Local Path
elif os.path.exists(img):
image = Image.open(img).convert("RGBA")
image_bytes = BytesIO()
image.save(image_bytes, format="PNG")
img_b64_str = base64.b64encode(image_bytes.getvalue()).decode()
# Bytes
else:
img_b64_str = img
images.append(img_b64_str)
else:
if i == 0:
# do not add role for the very first message.
# this will be added by llava_server
if message:
prompt += role.upper() + ": " + message + "\n"
else:
if message:
prompt += role.upper() + ": " + message + "\n"
else:
prompt += role.upper() + ":"
if images:
return prompt, images
else:
return prompt
async def handle_request(self, request: Request):
data = await request.json()
stream_opt = bool(data.get("stream", False))
if stream_opt:
print("[ MultimodalQnAService ] stream=True not used, this has not support streaming yet!")
stream_opt = False
chat_request = ChatCompletionRequest.model_validate(data)
# Multimodal RAG QnA With Videos has not yet accepts image as input during QnA.
prompt_and_image = self._handle_message(chat_request.messages)
if isinstance(prompt_and_image, tuple):
# print(f"This request include image, thus it is a follow-up query. Using lvm megaservice")
prompt, images = prompt_and_image
cur_megaservice = self.lvm_megaservice
initial_inputs = {"prompt": prompt, "image": images[0]}
else:
# print(f"This is the first query, requiring multimodal retrieval. Using multimodal rag megaservice")
prompt = prompt_and_image
cur_megaservice = self.megaservice
initial_inputs = {"text": prompt}
parameters = LLMParams(
max_new_tokens=chat_request.max_tokens if chat_request.max_tokens else 1024,
top_k=chat_request.top_k if chat_request.top_k else 10,
top_p=chat_request.top_p if chat_request.top_p else 0.95,
temperature=chat_request.temperature if chat_request.temperature else 0.01,
frequency_penalty=chat_request.frequency_penalty if chat_request.frequency_penalty else 0.0,
presence_penalty=chat_request.presence_penalty if chat_request.presence_penalty else 0.0,
repetition_penalty=chat_request.repetition_penalty if chat_request.repetition_penalty else 1.03,
streaming=stream_opt,
chat_template=chat_request.chat_template if chat_request.chat_template else None,
)
result_dict, runtime_graph = await cur_megaservice.schedule(
initial_inputs=initial_inputs, llm_parameters=parameters
)
for node, response in result_dict.items():
# the last microservice in this megaservice is LVM.
# checking if LVM returns StreamingResponse
# Currently, LVM with LLAVA has not yet supported streaming.
# @TODO: Will need to test this once LVM with LLAVA supports streaming
if (
isinstance(response, StreamingResponse)
and node == runtime_graph.all_leaves()[-1]
and self.megaservice.services[node].service_type == ServiceType.LVM
):
return response
last_node = runtime_graph.all_leaves()[-1]
if "text" in result_dict[last_node].keys():
response = result_dict[last_node]["text"]
else:
# text in not response message
# something wrong, for example due to empty retrieval results
if "detail" in result_dict[last_node].keys():
response = result_dict[last_node]["detail"]
else:
response = "The server fail to generate answer to your query!"
if "metadata" in result_dict[last_node].keys():
# from retrieval results
metadata = result_dict[last_node]["metadata"]
else:
# follow-up question, no retrieval
metadata = None
choices = []
usage = UsageInfo()
choices.append(
ChatCompletionResponseChoice(
index=0,
message=ChatMessage(role="assistant", content=response),
finish_reason="stop",
metadata=metadata,
)
)
return ChatCompletionResponse(model="multimodalqna", choices=choices, usage=usage)
def start(self):
super().__init__(
megaservice=self.megaservice,
host=self.host,
port=self.port,
endpoint=str(MegaServiceEndpoint.MULTIMODAL_QNA),
input_datatype=ChatCompletionRequest,
output_datatype=ChatCompletionResponse,
)
if __name__ == "__main__":
mmragwithvideos = MultimodalQnAService(host=MEGA_SERVICE_HOST_IP, port=MEGA_SERVICE_PORT)
mmragwithvideos = MultimodalQnAService(port=MEGA_SERVICE_PORT)
mmragwithvideos.add_remote_service()
mmragwithvideos.start()

View File

@@ -3,9 +3,18 @@
import os
from comps import MicroService, SearchQnAGateway, ServiceOrchestrator, ServiceType
from comps import Gateway, MegaServiceEndpoint, MicroService, ServiceOrchestrator, ServiceType
from comps.cores.proto.api_protocol import (
ChatCompletionRequest,
ChatCompletionResponse,
ChatCompletionResponseChoice,
ChatMessage,
UsageInfo,
)
from comps.cores.proto.docarray import LLMParams
from fastapi import Request
from fastapi.responses import StreamingResponse
MEGA_SERVICE_HOST_IP = os.getenv("MEGA_SERVICE_HOST_IP", "0.0.0.0")
MEGA_SERVICE_PORT = int(os.getenv("MEGA_SERVICE_PORT", 8888))
EMBEDDING_SERVICE_HOST_IP = os.getenv("EMBEDDING_SERVICE_HOST_IP", "0.0.0.0")
EMBEDDING_SERVICE_PORT = int(os.getenv("EMBEDDING_SERVICE_PORT", 6000))
@@ -17,7 +26,7 @@ LLM_SERVICE_HOST_IP = os.getenv("LLM_SERVICE_HOST_IP", "0.0.0.0")
LLM_SERVICE_PORT = int(os.getenv("LLM_SERVICE_PORT", 9000))
class SearchQnAService:
class SearchQnAService(Gateway):
def __init__(self, host="0.0.0.0", port=8000):
self.host = host
self.port = port
@@ -60,9 +69,58 @@ class SearchQnAService:
self.megaservice.flow_to(embedding, web_retriever)
self.megaservice.flow_to(web_retriever, rerank)
self.megaservice.flow_to(rerank, llm)
self.gateway = SearchQnAGateway(megaservice=self.megaservice, host="0.0.0.0", port=self.port)
async def handle_request(self, request: Request):
data = await request.json()
stream_opt = data.get("stream", True)
chat_request = ChatCompletionRequest.parse_obj(data)
prompt = self._handle_message(chat_request.messages)
parameters = LLMParams(
max_tokens=chat_request.max_tokens if chat_request.max_tokens else 1024,
top_k=chat_request.top_k if chat_request.top_k else 10,
top_p=chat_request.top_p if chat_request.top_p else 0.95,
temperature=chat_request.temperature if chat_request.temperature else 0.01,
frequency_penalty=chat_request.frequency_penalty if chat_request.frequency_penalty else 0.0,
presence_penalty=chat_request.presence_penalty if chat_request.presence_penalty else 0.0,
repetition_penalty=chat_request.repetition_penalty if chat_request.repetition_penalty else 1.03,
streaming=stream_opt,
)
result_dict, runtime_graph = await self.megaservice.schedule(
initial_inputs={"text": prompt}, llm_parameters=parameters
)
for node, response in result_dict.items():
# Here it suppose the last microservice in the megaservice is LLM.
if (
isinstance(response, StreamingResponse)
and node == list(self.megaservice.services.keys())[-1]
and self.megaservice.services[node].service_type == ServiceType.LLM
):
return response
last_node = runtime_graph.all_leaves()[-1]
response = result_dict[last_node]["text"]
choices = []
usage = UsageInfo()
choices.append(
ChatCompletionResponseChoice(
index=0,
message=ChatMessage(role="assistant", content=response),
finish_reason="stop",
)
)
return ChatCompletionResponse(model="searchqna", choices=choices, usage=usage)
def start(self):
super().__init__(
megaservice=self.megaservice,
host=self.host,
port=self.port,
endpoint=str(MegaServiceEndpoint.SEARCH_QNA),
input_datatype=ChatCompletionRequest,
output_datatype=ChatCompletionResponse,
)
if __name__ == "__main__":
searchqna = SearchQnAService(host=MEGA_SERVICE_HOST_IP, port=MEGA_SERVICE_PORT)
searchqna = SearchQnAService(port=MEGA_SERVICE_PORT)
searchqna.add_remote_service()
searchqna.start()

View File

@@ -15,15 +15,23 @@
import asyncio
import os
from comps import MicroService, ServiceOrchestrator, ServiceType, TranslationGateway
from comps import Gateway, MegaServiceEndpoint, MicroService, ServiceOrchestrator, ServiceType
from comps.cores.proto.api_protocol import (
ChatCompletionRequest,
ChatCompletionResponse,
ChatCompletionResponseChoice,
ChatMessage,
UsageInfo,
)
from fastapi import Request
from fastapi.responses import StreamingResponse
MEGA_SERVICE_HOST_IP = os.getenv("MEGA_SERVICE_HOST_IP", "0.0.0.0")
MEGA_SERVICE_PORT = int(os.getenv("MEGA_SERVICE_PORT", 8888))
LLM_SERVICE_HOST_IP = os.getenv("LLM_SERVICE_HOST_IP", "0.0.0.0")
LLM_SERVICE_PORT = int(os.getenv("LLM_SERVICE_PORT", 9000))
class TranslationService:
class TranslationService(Gateway):
def __init__(self, host="0.0.0.0", port=8000):
self.host = host
self.port = port
@@ -39,9 +47,57 @@ class TranslationService:
service_type=ServiceType.LLM,
)
self.megaservice.add(llm)
self.gateway = TranslationGateway(megaservice=self.megaservice, host="0.0.0.0", port=self.port)
async def handle_request(self, request: Request):
data = await request.json()
language_from = data["language_from"]
language_to = data["language_to"]
source_language = data["source_language"]
prompt_template = """
Translate this from {language_from} to {language_to}:
{language_from}:
{source_language}
{language_to}:
"""
prompt = prompt_template.format(
language_from=language_from, language_to=language_to, source_language=source_language
)
result_dict, runtime_graph = await self.megaservice.schedule(initial_inputs={"query": prompt})
for node, response in result_dict.items():
# Here it suppose the last microservice in the megaservice is LLM.
if (
isinstance(response, StreamingResponse)
and node == list(self.megaservice.services.keys())[-1]
and self.megaservice.services[node].service_type == ServiceType.LLM
):
return response
last_node = runtime_graph.all_leaves()[-1]
response = result_dict[last_node]["text"]
choices = []
usage = UsageInfo()
choices.append(
ChatCompletionResponseChoice(
index=0,
message=ChatMessage(role="assistant", content=response),
finish_reason="stop",
)
)
return ChatCompletionResponse(model="translation", choices=choices, usage=usage)
def start(self):
super().__init__(
megaservice=self.megaservice,
host=self.host,
port=self.port,
endpoint=str(MegaServiceEndpoint.TRANSLATION),
input_datatype=ChatCompletionRequest,
output_datatype=ChatCompletionResponse,
)
if __name__ == "__main__":
translation = TranslationService(host=MEGA_SERVICE_HOST_IP, port=MEGA_SERVICE_PORT)
translation = TranslationService(port=MEGA_SERVICE_PORT)
translation.add_remote_service()
translation.start()

View File

@@ -3,9 +3,18 @@
import os
from comps import MicroService, ServiceOrchestrator, ServiceType, VideoQnAGateway
from comps import Gateway, MegaServiceEndpoint, MicroService, ServiceOrchestrator, ServiceType
from comps.cores.proto.api_protocol import (
ChatCompletionRequest,
ChatCompletionResponse,
ChatCompletionResponseChoice,
ChatMessage,
UsageInfo,
)
from comps.cores.proto.docarray import LLMParams
from fastapi import Request
from fastapi.responses import StreamingResponse
MEGA_SERVICE_HOST_IP = os.getenv("MEGA_SERVICE_HOST_IP", "0.0.0.0")
MEGA_SERVICE_PORT = int(os.getenv("MEGA_SERVICE_PORT", 8888))
EMBEDDING_SERVICE_HOST_IP = os.getenv("EMBEDDING_SERVICE_HOST_IP", "0.0.0.0")
EMBEDDING_SERVICE_PORT = int(os.getenv("EMBEDDING_SERVICE_PORT", 6000))
@@ -17,7 +26,7 @@ LVM_SERVICE_HOST_IP = os.getenv("LVM_SERVICE_HOST_IP", "0.0.0.0")
LVM_SERVICE_PORT = int(os.getenv("LVM_SERVICE_PORT", 9000))
class VideoQnAService:
class VideoQnAService(Gateway):
def __init__(self, host="0.0.0.0", port=8888):
self.host = host
self.port = port
@@ -60,9 +69,58 @@ class VideoQnAService:
self.megaservice.flow_to(embedding, retriever)
self.megaservice.flow_to(retriever, rerank)
self.megaservice.flow_to(rerank, lvm)
self.gateway = VideoQnAGateway(megaservice=self.megaservice, host="0.0.0.0", port=self.port)
async def handle_request(self, request: Request):
data = await request.json()
stream_opt = data.get("stream", False)
chat_request = ChatCompletionRequest.parse_obj(data)
prompt = self._handle_message(chat_request.messages)
parameters = LLMParams(
max_new_tokens=chat_request.max_tokens if chat_request.max_tokens else 1024,
top_k=chat_request.top_k if chat_request.top_k else 10,
top_p=chat_request.top_p if chat_request.top_p else 0.95,
temperature=chat_request.temperature if chat_request.temperature else 0.01,
frequency_penalty=chat_request.frequency_penalty if chat_request.frequency_penalty else 0.0,
presence_penalty=chat_request.presence_penalty if chat_request.presence_penalty else 0.0,
repetition_penalty=chat_request.repetition_penalty if chat_request.repetition_penalty else 1.03,
streaming=stream_opt,
)
result_dict, runtime_graph = await self.megaservice.schedule(
initial_inputs={"text": prompt}, llm_parameters=parameters
)
for node, response in result_dict.items():
# Here it suppose the last microservice in the megaservice is LVM.
if (
isinstance(response, StreamingResponse)
and node == list(self.megaservice.services.keys())[-1]
and self.megaservice.services[node].service_type == ServiceType.LVM
):
return response
last_node = runtime_graph.all_leaves()[-1]
response = result_dict[last_node]["text"]
choices = []
usage = UsageInfo()
choices.append(
ChatCompletionResponseChoice(
index=0,
message=ChatMessage(role="assistant", content=response),
finish_reason="stop",
)
)
return ChatCompletionResponse(model="videoqna", choices=choices, usage=usage)
def start(self):
super().__init__(
megaservice=self.megaservice,
host=self.host,
port=self.port,
endpoint=str(MegaServiceEndpoint.VIDEO_RAG_QNA),
input_datatype=ChatCompletionRequest,
output_datatype=ChatCompletionResponse,
)
if __name__ == "__main__":
videoqna = VideoQnAService(host=MEGA_SERVICE_HOST_IP, port=MEGA_SERVICE_PORT)
videoqna = VideoQnAService(port=MEGA_SERVICE_PORT)
videoqna.add_remote_service()
videoqna.start()

View File

@@ -3,15 +3,24 @@
import os
from comps import MicroService, ServiceOrchestrator, ServiceType, VisualQnAGateway
from comps import Gateway, MegaServiceEndpoint, MicroService, ServiceOrchestrator, ServiceType
from comps.cores.proto.api_protocol import (
ChatCompletionRequest,
ChatCompletionResponse,
ChatCompletionResponseChoice,
ChatMessage,
UsageInfo,
)
from comps.cores.proto.docarray import LLMParams
from fastapi import Request
from fastapi.responses import StreamingResponse
MEGA_SERVICE_HOST_IP = os.getenv("MEGA_SERVICE_HOST_IP", "0.0.0.0")
MEGA_SERVICE_PORT = int(os.getenv("MEGA_SERVICE_PORT", 8888))
LVM_SERVICE_HOST_IP = os.getenv("LVM_SERVICE_HOST_IP", "0.0.0.0")
LVM_SERVICE_PORT = int(os.getenv("LLM_SERVICE_PORT", 9399))
class VisualQnAService:
class VisualQnAService(Gateway):
def __init__(self, host="0.0.0.0", port=8000):
self.host = host
self.port = port
@@ -27,9 +36,58 @@ class VisualQnAService:
service_type=ServiceType.LVM,
)
self.megaservice.add(llm)
self.gateway = VisualQnAGateway(megaservice=self.megaservice, host="0.0.0.0", port=self.port)
async def handle_request(self, request: Request):
data = await request.json()
stream_opt = data.get("stream", False)
chat_request = ChatCompletionRequest.parse_obj(data)
prompt, images = self._handle_message(chat_request.messages)
parameters = LLMParams(
max_new_tokens=chat_request.max_tokens if chat_request.max_tokens else 1024,
top_k=chat_request.top_k if chat_request.top_k else 10,
top_p=chat_request.top_p if chat_request.top_p else 0.95,
temperature=chat_request.temperature if chat_request.temperature else 0.01,
frequency_penalty=chat_request.frequency_penalty if chat_request.frequency_penalty else 0.0,
presence_penalty=chat_request.presence_penalty if chat_request.presence_penalty else 0.0,
repetition_penalty=chat_request.repetition_penalty if chat_request.repetition_penalty else 1.03,
streaming=stream_opt,
)
result_dict, runtime_graph = await self.megaservice.schedule(
initial_inputs={"prompt": prompt, "image": images[0]}, llm_parameters=parameters
)
for node, response in result_dict.items():
# Here it suppose the last microservice in the megaservice is LVM.
if (
isinstance(response, StreamingResponse)
and node == list(self.megaservice.services.keys())[-1]
and self.megaservice.services[node].service_type == ServiceType.LVM
):
return response
last_node = runtime_graph.all_leaves()[-1]
response = result_dict[last_node]["text"]
choices = []
usage = UsageInfo()
choices.append(
ChatCompletionResponseChoice(
index=0,
message=ChatMessage(role="assistant", content=response),
finish_reason="stop",
)
)
return ChatCompletionResponse(model="visualqna", choices=choices, usage=usage)
def start(self):
super().__init__(
megaservice=self.megaservice,
host=self.host,
port=self.port,
endpoint=str(MegaServiceEndpoint.VISUAL_QNA),
input_datatype=ChatCompletionRequest,
output_datatype=ChatCompletionResponse,
)
if __name__ == "__main__":
visualqna = VisualQnAService(host=MEGA_SERVICE_HOST_IP, port=MEGA_SERVICE_PORT)
visualqna = VisualQnAService(port=MEGA_SERVICE_PORT)
visualqna.add_remote_service()
visualqna.start()