move examples gateway (#992)
Co-authored-by: root <root@idc708073.jf.intel.com> Co-authored-by: pre-commit-ci[bot] <66853113+pre-commit-ci[bot]@users.noreply.github.com> Co-authored-by: Sihan Chen <39623753+Spycsh@users.noreply.github.com>
This commit is contained in:
@@ -4,9 +4,11 @@
|
||||
import asyncio
|
||||
import os
|
||||
|
||||
from comps import AudioQnAGateway, MicroService, ServiceOrchestrator, ServiceType
|
||||
from comps import Gateway, MegaServiceEndpoint, MicroService, ServiceOrchestrator, ServiceType
|
||||
from comps.cores.proto.api_protocol import AudioChatCompletionRequest, ChatCompletionResponse
|
||||
from comps.cores.proto.docarray import LLMParams
|
||||
from fastapi import Request
|
||||
|
||||
MEGA_SERVICE_HOST_IP = os.getenv("MEGA_SERVICE_HOST_IP", "0.0.0.0")
|
||||
MEGA_SERVICE_PORT = int(os.getenv("MEGA_SERVICE_PORT", 8888))
|
||||
ASR_SERVICE_HOST_IP = os.getenv("ASR_SERVICE_HOST_IP", "0.0.0.0")
|
||||
ASR_SERVICE_PORT = int(os.getenv("ASR_SERVICE_PORT", 9099))
|
||||
@@ -16,7 +18,7 @@ TTS_SERVICE_HOST_IP = os.getenv("TTS_SERVICE_HOST_IP", "0.0.0.0")
|
||||
TTS_SERVICE_PORT = int(os.getenv("TTS_SERVICE_PORT", 9088))
|
||||
|
||||
|
||||
class AudioQnAService:
|
||||
class AudioQnAService(Gateway):
|
||||
def __init__(self, host="0.0.0.0", port=8000):
|
||||
self.host = host
|
||||
self.port = port
|
||||
@@ -50,9 +52,43 @@ class AudioQnAService:
|
||||
self.megaservice.add(asr).add(llm).add(tts)
|
||||
self.megaservice.flow_to(asr, llm)
|
||||
self.megaservice.flow_to(llm, tts)
|
||||
self.gateway = AudioQnAGateway(megaservice=self.megaservice, host="0.0.0.0", port=self.port)
|
||||
|
||||
async def handle_request(self, request: Request):
|
||||
data = await request.json()
|
||||
|
||||
chat_request = AudioChatCompletionRequest.parse_obj(data)
|
||||
parameters = LLMParams(
|
||||
# relatively lower max_tokens for audio conversation
|
||||
max_tokens=chat_request.max_tokens if chat_request.max_tokens else 128,
|
||||
top_k=chat_request.top_k if chat_request.top_k else 10,
|
||||
top_p=chat_request.top_p if chat_request.top_p else 0.95,
|
||||
temperature=chat_request.temperature if chat_request.temperature else 0.01,
|
||||
frequency_penalty=chat_request.frequency_penalty if chat_request.frequency_penalty else 0.0,
|
||||
presence_penalty=chat_request.presence_penalty if chat_request.presence_penalty else 0.0,
|
||||
repetition_penalty=chat_request.repetition_penalty if chat_request.repetition_penalty else 1.03,
|
||||
streaming=False, # TODO add streaming LLM output as input to TTS
|
||||
)
|
||||
result_dict, runtime_graph = await self.megaservice.schedule(
|
||||
initial_inputs={"byte_str": chat_request.audio}, llm_parameters=parameters
|
||||
)
|
||||
|
||||
last_node = runtime_graph.all_leaves()[-1]
|
||||
response = result_dict[last_node]["byte_str"]
|
||||
|
||||
return response
|
||||
|
||||
def start(self):
|
||||
super().__init__(
|
||||
megaservice=self.megaservice,
|
||||
host=self.host,
|
||||
port=self.port,
|
||||
endpoint=str(MegaServiceEndpoint.AUDIO_QNA),
|
||||
input_datatype=AudioChatCompletionRequest,
|
||||
output_datatype=ChatCompletionResponse,
|
||||
)
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
audioqna = AudioQnAService(host=MEGA_SERVICE_HOST_IP, port=MEGA_SERVICE_PORT)
|
||||
audioqna = AudioQnAService(port=MEGA_SERVICE_PORT)
|
||||
audioqna.add_remote_service()
|
||||
audioqna.start()
|
||||
|
||||
@@ -5,9 +5,11 @@ import asyncio
|
||||
import base64
|
||||
import os
|
||||
|
||||
from comps import AudioQnAGateway, MicroService, ServiceOrchestrator, ServiceType
|
||||
from comps import Gateway, MegaServiceEndpoint, MicroService, ServiceOrchestrator, ServiceType
|
||||
from comps.cores.proto.api_protocol import AudioChatCompletionRequest, ChatCompletionResponse
|
||||
from comps.cores.proto.docarray import LLMParams
|
||||
from fastapi import Request
|
||||
|
||||
MEGA_SERVICE_HOST_IP = os.getenv("MEGA_SERVICE_HOST_IP", "0.0.0.0")
|
||||
MEGA_SERVICE_PORT = int(os.getenv("MEGA_SERVICE_PORT", 8888))
|
||||
|
||||
WHISPER_SERVER_HOST_IP = os.getenv("WHISPER_SERVER_HOST_IP", "0.0.0.0")
|
||||
@@ -52,7 +54,7 @@ def align_outputs(self, data, cur_node, inputs, runtime_graph, llm_parameters_di
|
||||
return data
|
||||
|
||||
|
||||
class AudioQnAService:
|
||||
class AudioQnAService(Gateway):
|
||||
def __init__(self, host="0.0.0.0", port=8000):
|
||||
self.host = host
|
||||
self.port = port
|
||||
@@ -90,9 +92,43 @@ class AudioQnAService:
|
||||
self.megaservice.add(asr).add(llm).add(tts)
|
||||
self.megaservice.flow_to(asr, llm)
|
||||
self.megaservice.flow_to(llm, tts)
|
||||
self.gateway = AudioQnAGateway(megaservice=self.megaservice, host="0.0.0.0", port=self.port)
|
||||
|
||||
async def handle_request(self, request: Request):
|
||||
data = await request.json()
|
||||
|
||||
chat_request = AudioChatCompletionRequest.parse_obj(data)
|
||||
parameters = LLMParams(
|
||||
# relatively lower max_tokens for audio conversation
|
||||
max_tokens=chat_request.max_tokens if chat_request.max_tokens else 128,
|
||||
top_k=chat_request.top_k if chat_request.top_k else 10,
|
||||
top_p=chat_request.top_p if chat_request.top_p else 0.95,
|
||||
temperature=chat_request.temperature if chat_request.temperature else 0.01,
|
||||
frequency_penalty=chat_request.frequency_penalty if chat_request.frequency_penalty else 0.0,
|
||||
presence_penalty=chat_request.presence_penalty if chat_request.presence_penalty else 0.0,
|
||||
repetition_penalty=chat_request.repetition_penalty if chat_request.repetition_penalty else 1.03,
|
||||
streaming=False, # TODO add streaming LLM output as input to TTS
|
||||
)
|
||||
result_dict, runtime_graph = await self.megaservice.schedule(
|
||||
initial_inputs={"byte_str": chat_request.audio}, llm_parameters=parameters
|
||||
)
|
||||
|
||||
last_node = runtime_graph.all_leaves()[-1]
|
||||
response = result_dict[last_node]["byte_str"]
|
||||
|
||||
return response
|
||||
|
||||
def start(self):
|
||||
super().__init__(
|
||||
megaservice=self.megaservice,
|
||||
host=self.host,
|
||||
port=self.port,
|
||||
endpoint=str(MegaServiceEndpoint.AUDIO_QNA),
|
||||
input_datatype=AudioChatCompletionRequest,
|
||||
output_datatype=ChatCompletionResponse,
|
||||
)
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
audioqna = AudioQnAService(host=MEGA_SERVICE_HOST_IP, port=MEGA_SERVICE_PORT)
|
||||
audioqna = AudioQnAService(port=MEGA_SERVICE_PORT)
|
||||
audioqna.add_remote_service()
|
||||
audioqna.start()
|
||||
|
||||
@@ -5,9 +5,11 @@ import asyncio
|
||||
import os
|
||||
import sys
|
||||
|
||||
from comps import AvatarChatbotGateway, MicroService, ServiceOrchestrator, ServiceType
|
||||
from comps import Gateway, MegaServiceEndpoint, MicroService, ServiceOrchestrator, ServiceType
|
||||
from comps.cores.proto.api_protocol import AudioChatCompletionRequest, ChatCompletionResponse
|
||||
from comps.cores.proto.docarray import LLMParams
|
||||
from fastapi import Request
|
||||
|
||||
MEGA_SERVICE_HOST_IP = os.getenv("MEGA_SERVICE_HOST_IP", "0.0.0.0")
|
||||
MEGA_SERVICE_PORT = int(os.getenv("MEGA_SERVICE_PORT", 8888))
|
||||
ASR_SERVICE_HOST_IP = os.getenv("ASR_SERVICE_HOST_IP", "0.0.0.0")
|
||||
ASR_SERVICE_PORT = int(os.getenv("ASR_SERVICE_PORT", 9099))
|
||||
@@ -27,7 +29,7 @@ def check_env_vars(env_var_list):
|
||||
print("All environment variables are set.")
|
||||
|
||||
|
||||
class AvatarChatbotService:
|
||||
class AvatarChatbotService(Gateway):
|
||||
def __init__(self, host="0.0.0.0", port=8000):
|
||||
self.host = host
|
||||
self.port = port
|
||||
@@ -70,7 +72,39 @@ class AvatarChatbotService:
|
||||
self.megaservice.flow_to(asr, llm)
|
||||
self.megaservice.flow_to(llm, tts)
|
||||
self.megaservice.flow_to(tts, animation)
|
||||
self.gateway = AvatarChatbotGateway(megaservice=self.megaservice, host="0.0.0.0", port=self.port)
|
||||
|
||||
async def handle_request(self, request: Request):
|
||||
data = await request.json()
|
||||
|
||||
chat_request = AudioChatCompletionRequest.model_validate(data)
|
||||
parameters = LLMParams(
|
||||
# relatively lower max_tokens for audio conversation
|
||||
max_tokens=chat_request.max_tokens if chat_request.max_tokens else 128,
|
||||
top_k=chat_request.top_k if chat_request.top_k else 10,
|
||||
top_p=chat_request.top_p if chat_request.top_p else 0.95,
|
||||
temperature=chat_request.temperature if chat_request.temperature else 0.01,
|
||||
repetition_penalty=chat_request.presence_penalty if chat_request.presence_penalty else 1.03,
|
||||
streaming=False, # TODO add streaming LLM output as input to TTS
|
||||
)
|
||||
# print(parameters)
|
||||
|
||||
result_dict, runtime_graph = await self.megaservice.schedule(
|
||||
initial_inputs={"byte_str": chat_request.audio}, llm_parameters=parameters
|
||||
)
|
||||
|
||||
last_node = runtime_graph.all_leaves()[-1]
|
||||
response = result_dict[last_node]["video_path"]
|
||||
return response
|
||||
|
||||
def start(self):
|
||||
super().__init__(
|
||||
megaservice=self.megaservice,
|
||||
host=self.host,
|
||||
port=self.port,
|
||||
endpoint=str(MegaServiceEndpoint.AVATAR_CHATBOT),
|
||||
input_datatype=AudioChatCompletionRequest,
|
||||
output_datatype=ChatCompletionResponse,
|
||||
)
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
@@ -89,5 +123,6 @@ if __name__ == "__main__":
|
||||
]
|
||||
)
|
||||
|
||||
avatarchatbot = AvatarChatbotService(host=MEGA_SERVICE_HOST_IP, port=MEGA_SERVICE_PORT)
|
||||
avatarchatbot = AvatarChatbotService(port=MEGA_SERVICE_PORT)
|
||||
avatarchatbot.add_remote_service()
|
||||
avatarchatbot.start()
|
||||
|
||||
@@ -6,7 +6,17 @@ import json
|
||||
import os
|
||||
import re
|
||||
|
||||
from comps import ChatQnAGateway, MicroService, ServiceOrchestrator, ServiceType
|
||||
from comps import Gateway, MegaServiceEndpoint, MicroService, ServiceOrchestrator, ServiceType
|
||||
from comps.cores.proto.api_protocol import (
|
||||
ChatCompletionRequest,
|
||||
ChatCompletionResponse,
|
||||
ChatCompletionResponseChoice,
|
||||
ChatMessage,
|
||||
UsageInfo,
|
||||
)
|
||||
from comps.cores.proto.docarray import LLMParams, RerankerParms, RetrieverParms
|
||||
from fastapi import Request
|
||||
from fastapi.responses import StreamingResponse
|
||||
from langchain_core.prompts import PromptTemplate
|
||||
|
||||
|
||||
@@ -35,7 +45,6 @@ If you don't know the answer to a question, please don't share false information
|
||||
return template.format(context=context_str, question=question)
|
||||
|
||||
|
||||
MEGA_SERVICE_HOST_IP = os.getenv("MEGA_SERVICE_HOST_IP", "0.0.0.0")
|
||||
MEGA_SERVICE_PORT = int(os.getenv("MEGA_SERVICE_PORT", 8888))
|
||||
GUARDRAIL_SERVICE_HOST_IP = os.getenv("GUARDRAIL_SERVICE_HOST_IP", "0.0.0.0")
|
||||
GUARDRAIL_SERVICE_PORT = int(os.getenv("GUARDRAIL_SERVICE_PORT", 80))
|
||||
@@ -178,13 +187,14 @@ def align_generator(self, gen, **kwargs):
|
||||
yield "data: [DONE]\n\n"
|
||||
|
||||
|
||||
class ChatQnAService:
|
||||
class ChatQnAService(Gateway):
|
||||
def __init__(self, host="0.0.0.0", port=8000):
|
||||
self.host = host
|
||||
self.port = port
|
||||
ServiceOrchestrator.align_inputs = align_inputs
|
||||
ServiceOrchestrator.align_outputs = align_outputs
|
||||
ServiceOrchestrator.align_generator = align_generator
|
||||
|
||||
self.megaservice = ServiceOrchestrator()
|
||||
|
||||
def add_remote_service(self):
|
||||
@@ -228,7 +238,6 @@ class ChatQnAService:
|
||||
self.megaservice.flow_to(embedding, retriever)
|
||||
self.megaservice.flow_to(retriever, rerank)
|
||||
self.megaservice.flow_to(rerank, llm)
|
||||
self.gateway = ChatQnAGateway(megaservice=self.megaservice, host="0.0.0.0", port=self.port)
|
||||
|
||||
def add_remote_service_without_rerank(self):
|
||||
|
||||
@@ -261,7 +270,6 @@ class ChatQnAService:
|
||||
self.megaservice.add(embedding).add(retriever).add(llm)
|
||||
self.megaservice.flow_to(embedding, retriever)
|
||||
self.megaservice.flow_to(retriever, llm)
|
||||
self.gateway = ChatQnAGateway(megaservice=self.megaservice, host="0.0.0.0", port=self.port)
|
||||
|
||||
def add_remote_service_with_guardrails(self):
|
||||
guardrail_in = MicroService(
|
||||
@@ -319,7 +327,66 @@ class ChatQnAService:
|
||||
self.megaservice.flow_to(retriever, rerank)
|
||||
self.megaservice.flow_to(rerank, llm)
|
||||
# self.megaservice.flow_to(llm, guardrail_out)
|
||||
self.gateway = ChatQnAGateway(megaservice=self.megaservice, host="0.0.0.0", port=self.port)
|
||||
|
||||
async def handle_request(self, request: Request):
|
||||
data = await request.json()
|
||||
stream_opt = data.get("stream", True)
|
||||
chat_request = ChatCompletionRequest.parse_obj(data)
|
||||
prompt = self._handle_message(chat_request.messages)
|
||||
parameters = LLMParams(
|
||||
max_tokens=chat_request.max_tokens if chat_request.max_tokens else 1024,
|
||||
top_k=chat_request.top_k if chat_request.top_k else 10,
|
||||
top_p=chat_request.top_p if chat_request.top_p else 0.95,
|
||||
temperature=chat_request.temperature if chat_request.temperature else 0.01,
|
||||
frequency_penalty=chat_request.frequency_penalty if chat_request.frequency_penalty else 0.0,
|
||||
presence_penalty=chat_request.presence_penalty if chat_request.presence_penalty else 0.0,
|
||||
repetition_penalty=chat_request.repetition_penalty if chat_request.repetition_penalty else 1.03,
|
||||
streaming=stream_opt,
|
||||
chat_template=chat_request.chat_template if chat_request.chat_template else None,
|
||||
)
|
||||
retriever_parameters = RetrieverParms(
|
||||
search_type=chat_request.search_type if chat_request.search_type else "similarity",
|
||||
k=chat_request.k if chat_request.k else 4,
|
||||
distance_threshold=chat_request.distance_threshold if chat_request.distance_threshold else None,
|
||||
fetch_k=chat_request.fetch_k if chat_request.fetch_k else 20,
|
||||
lambda_mult=chat_request.lambda_mult if chat_request.lambda_mult else 0.5,
|
||||
score_threshold=chat_request.score_threshold if chat_request.score_threshold else 0.2,
|
||||
)
|
||||
reranker_parameters = RerankerParms(
|
||||
top_n=chat_request.top_n if chat_request.top_n else 1,
|
||||
)
|
||||
result_dict, runtime_graph = await self.megaservice.schedule(
|
||||
initial_inputs={"text": prompt},
|
||||
llm_parameters=parameters,
|
||||
retriever_parameters=retriever_parameters,
|
||||
reranker_parameters=reranker_parameters,
|
||||
)
|
||||
for node, response in result_dict.items():
|
||||
if isinstance(response, StreamingResponse):
|
||||
return response
|
||||
last_node = runtime_graph.all_leaves()[-1]
|
||||
response = result_dict[last_node]["text"]
|
||||
choices = []
|
||||
usage = UsageInfo()
|
||||
choices.append(
|
||||
ChatCompletionResponseChoice(
|
||||
index=0,
|
||||
message=ChatMessage(role="assistant", content=response),
|
||||
finish_reason="stop",
|
||||
)
|
||||
)
|
||||
return ChatCompletionResponse(model="chatqna", choices=choices, usage=usage)
|
||||
|
||||
def start(self):
|
||||
|
||||
super().__init__(
|
||||
megaservice=self.megaservice,
|
||||
host=self.host,
|
||||
port=self.port,
|
||||
endpoint=str(MegaServiceEndpoint.CHAT_QNA),
|
||||
input_datatype=ChatCompletionRequest,
|
||||
output_datatype=ChatCompletionResponse,
|
||||
)
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
@@ -329,10 +396,12 @@ if __name__ == "__main__":
|
||||
|
||||
args = parser.parse_args()
|
||||
|
||||
chatqna = ChatQnAService(host=MEGA_SERVICE_HOST_IP, port=MEGA_SERVICE_PORT)
|
||||
chatqna = ChatQnAService(port=MEGA_SERVICE_PORT)
|
||||
if args.without_rerank:
|
||||
chatqna.add_remote_service_without_rerank()
|
||||
elif args.with_guardrails:
|
||||
chatqna.add_remote_service_with_guardrails()
|
||||
else:
|
||||
chatqna.add_remote_service()
|
||||
|
||||
chatqna.start()
|
||||
|
||||
@@ -3,7 +3,17 @@
|
||||
|
||||
import os
|
||||
|
||||
from comps import ChatQnAGateway, MicroService, ServiceOrchestrator, ServiceType
|
||||
from comps import Gateway, MegaServiceEndpoint, MicroService, ServiceOrchestrator, ServiceType
|
||||
from comps.cores.proto.api_protocol import (
|
||||
ChatCompletionRequest,
|
||||
ChatCompletionResponse,
|
||||
ChatCompletionResponseChoice,
|
||||
ChatMessage,
|
||||
UsageInfo,
|
||||
)
|
||||
from comps.cores.proto.docarray import LLMParams, RerankerParms, RetrieverParms
|
||||
from fastapi import Request
|
||||
from fastapi.responses import StreamingResponse
|
||||
|
||||
MEGA_SERVICE_HOST_IP = os.getenv("MEGA_SERVICE_HOST_IP", "0.0.0.0")
|
||||
MEGA_SERVICE_PORT = int(os.getenv("MEGA_SERVICE_PORT", 8888))
|
||||
@@ -17,7 +27,7 @@ LLM_SERVICE_HOST_IP = os.getenv("LLM_SERVICE_HOST_IP", "0.0.0.0")
|
||||
LLM_SERVICE_PORT = int(os.getenv("LLM_SERVICE_PORT", 9000))
|
||||
|
||||
|
||||
class ChatQnAService:
|
||||
class ChatQnAService(Gateway):
|
||||
def __init__(self, host="0.0.0.0", port=8000):
|
||||
self.host = host
|
||||
self.port = port
|
||||
@@ -60,9 +70,69 @@ class ChatQnAService:
|
||||
self.megaservice.flow_to(embedding, retriever)
|
||||
self.megaservice.flow_to(retriever, rerank)
|
||||
self.megaservice.flow_to(rerank, llm)
|
||||
self.gateway = ChatQnAGateway(megaservice=self.megaservice, host="0.0.0.0", port=self.port)
|
||||
|
||||
async def handle_request(self, request: Request):
|
||||
data = await request.json()
|
||||
stream_opt = data.get("stream", True)
|
||||
chat_request = ChatCompletionRequest.parse_obj(data)
|
||||
prompt = self._handle_message(chat_request.messages)
|
||||
parameters = LLMParams(
|
||||
max_tokens=chat_request.max_tokens if chat_request.max_tokens else 1024,
|
||||
top_k=chat_request.top_k if chat_request.top_k else 10,
|
||||
top_p=chat_request.top_p if chat_request.top_p else 0.95,
|
||||
temperature=chat_request.temperature if chat_request.temperature else 0.01,
|
||||
frequency_penalty=chat_request.frequency_penalty if chat_request.frequency_penalty else 0.0,
|
||||
presence_penalty=chat_request.presence_penalty if chat_request.presence_penalty else 0.0,
|
||||
repetition_penalty=chat_request.repetition_penalty if chat_request.repetition_penalty else 1.03,
|
||||
streaming=stream_opt,
|
||||
chat_template=chat_request.chat_template if chat_request.chat_template else None,
|
||||
)
|
||||
retriever_parameters = RetrieverParms(
|
||||
search_type=chat_request.search_type if chat_request.search_type else "similarity",
|
||||
k=chat_request.k if chat_request.k else 4,
|
||||
distance_threshold=chat_request.distance_threshold if chat_request.distance_threshold else None,
|
||||
fetch_k=chat_request.fetch_k if chat_request.fetch_k else 20,
|
||||
lambda_mult=chat_request.lambda_mult if chat_request.lambda_mult else 0.5,
|
||||
score_threshold=chat_request.score_threshold if chat_request.score_threshold else 0.2,
|
||||
)
|
||||
reranker_parameters = RerankerParms(
|
||||
top_n=chat_request.top_n if chat_request.top_n else 1,
|
||||
)
|
||||
result_dict, runtime_graph = await self.megaservice.schedule(
|
||||
initial_inputs={"text": prompt},
|
||||
llm_parameters=parameters,
|
||||
retriever_parameters=retriever_parameters,
|
||||
reranker_parameters=reranker_parameters,
|
||||
)
|
||||
for node, response in result_dict.items():
|
||||
if isinstance(response, StreamingResponse):
|
||||
return response
|
||||
last_node = runtime_graph.all_leaves()[-1]
|
||||
response = result_dict[last_node]["text"]
|
||||
choices = []
|
||||
usage = UsageInfo()
|
||||
choices.append(
|
||||
ChatCompletionResponseChoice(
|
||||
index=0,
|
||||
message=ChatMessage(role="assistant", content=response),
|
||||
finish_reason="stop",
|
||||
)
|
||||
)
|
||||
return ChatCompletionResponse(model="chatqna", choices=choices, usage=usage)
|
||||
|
||||
def start(self):
|
||||
|
||||
super().__init__(
|
||||
megaservice=self.megaservice,
|
||||
host=self.host,
|
||||
port=self.port,
|
||||
endpoint=str(MegaServiceEndpoint.CHAT_QNA),
|
||||
input_datatype=ChatCompletionRequest,
|
||||
output_datatype=ChatCompletionResponse,
|
||||
)
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
chatqna = ChatQnAService(host=MEGA_SERVICE_HOST_IP, port=MEGA_SERVICE_PORT)
|
||||
chatqna = ChatQnAService(port=MEGA_SERVICE_PORT)
|
||||
chatqna.add_remote_service()
|
||||
chatqna.start()
|
||||
|
||||
@@ -4,15 +4,24 @@
|
||||
import asyncio
|
||||
import os
|
||||
|
||||
from comps import CodeGenGateway, MicroService, ServiceOrchestrator, ServiceType
|
||||
from comps import Gateway, MegaServiceEndpoint, MicroService, ServiceOrchestrator, ServiceType
|
||||
from comps.cores.proto.api_protocol import (
|
||||
ChatCompletionRequest,
|
||||
ChatCompletionResponse,
|
||||
ChatCompletionResponseChoice,
|
||||
ChatMessage,
|
||||
UsageInfo,
|
||||
)
|
||||
from comps.cores.proto.docarray import LLMParams
|
||||
from fastapi import Request
|
||||
from fastapi.responses import StreamingResponse
|
||||
|
||||
MEGA_SERVICE_HOST_IP = os.getenv("MEGA_SERVICE_HOST_IP", "0.0.0.0")
|
||||
MEGA_SERVICE_PORT = int(os.getenv("MEGA_SERVICE_PORT", 7778))
|
||||
LLM_SERVICE_HOST_IP = os.getenv("LLM_SERVICE_HOST_IP", "0.0.0.0")
|
||||
LLM_SERVICE_PORT = int(os.getenv("LLM_SERVICE_PORT", 9000))
|
||||
|
||||
|
||||
class CodeGenService:
|
||||
class CodeGenService(Gateway):
|
||||
def __init__(self, host="0.0.0.0", port=8000):
|
||||
self.host = host
|
||||
self.port = port
|
||||
@@ -28,9 +37,58 @@ class CodeGenService:
|
||||
service_type=ServiceType.LLM,
|
||||
)
|
||||
self.megaservice.add(llm)
|
||||
self.gateway = CodeGenGateway(megaservice=self.megaservice, host="0.0.0.0", port=self.port)
|
||||
|
||||
async def handle_request(self, request: Request):
|
||||
data = await request.json()
|
||||
stream_opt = data.get("stream", True)
|
||||
chat_request = ChatCompletionRequest.parse_obj(data)
|
||||
prompt = self._handle_message(chat_request.messages)
|
||||
parameters = LLMParams(
|
||||
max_tokens=chat_request.max_tokens if chat_request.max_tokens else 1024,
|
||||
top_k=chat_request.top_k if chat_request.top_k else 10,
|
||||
top_p=chat_request.top_p if chat_request.top_p else 0.95,
|
||||
temperature=chat_request.temperature if chat_request.temperature else 0.01,
|
||||
frequency_penalty=chat_request.frequency_penalty if chat_request.frequency_penalty else 0.0,
|
||||
presence_penalty=chat_request.presence_penalty if chat_request.presence_penalty else 0.0,
|
||||
repetition_penalty=chat_request.repetition_penalty if chat_request.repetition_penalty else 1.03,
|
||||
streaming=stream_opt,
|
||||
)
|
||||
result_dict, runtime_graph = await self.megaservice.schedule(
|
||||
initial_inputs={"query": prompt}, llm_parameters=parameters
|
||||
)
|
||||
for node, response in result_dict.items():
|
||||
# Here it suppose the last microservice in the megaservice is LLM.
|
||||
if (
|
||||
isinstance(response, StreamingResponse)
|
||||
and node == list(self.megaservice.services.keys())[-1]
|
||||
and self.megaservice.services[node].service_type == ServiceType.LLM
|
||||
):
|
||||
return response
|
||||
last_node = runtime_graph.all_leaves()[-1]
|
||||
response = result_dict[last_node]["text"]
|
||||
choices = []
|
||||
usage = UsageInfo()
|
||||
choices.append(
|
||||
ChatCompletionResponseChoice(
|
||||
index=0,
|
||||
message=ChatMessage(role="assistant", content=response),
|
||||
finish_reason="stop",
|
||||
)
|
||||
)
|
||||
return ChatCompletionResponse(model="codegen", choices=choices, usage=usage)
|
||||
|
||||
def start(self):
|
||||
super().__init__(
|
||||
megaservice=self.megaservice,
|
||||
host=self.host,
|
||||
port=self.port,
|
||||
endpoint=str(MegaServiceEndpoint.CODE_GEN),
|
||||
input_datatype=ChatCompletionRequest,
|
||||
output_datatype=ChatCompletionResponse,
|
||||
)
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
chatqna = CodeGenService(host=MEGA_SERVICE_HOST_IP, port=MEGA_SERVICE_PORT)
|
||||
chatqna = CodeGenService(port=MEGA_SERVICE_PORT)
|
||||
chatqna.add_remote_service()
|
||||
chatqna.start()
|
||||
|
||||
@@ -4,15 +4,23 @@
|
||||
import asyncio
|
||||
import os
|
||||
|
||||
from comps import CodeTransGateway, MicroService, ServiceOrchestrator
|
||||
from comps import Gateway, MegaServiceEndpoint, MicroService, ServiceOrchestrator, ServiceType
|
||||
from comps.cores.proto.api_protocol import (
|
||||
ChatCompletionRequest,
|
||||
ChatCompletionResponse,
|
||||
ChatCompletionResponseChoice,
|
||||
ChatMessage,
|
||||
UsageInfo,
|
||||
)
|
||||
from fastapi import Request
|
||||
from fastapi.responses import StreamingResponse
|
||||
|
||||
MEGA_SERVICE_HOST_IP = os.getenv("MEGA_SERVICE_HOST_IP", "0.0.0.0")
|
||||
MEGA_SERVICE_PORT = int(os.getenv("MEGA_SERVICE_PORT", 7777))
|
||||
LLM_SERVICE_HOST_IP = os.getenv("LLM_SERVICE_HOST_IP", "0.0.0.0")
|
||||
LLM_SERVICE_PORT = int(os.getenv("LLM_SERVICE_PORT", 9000))
|
||||
|
||||
|
||||
class CodeTransService:
|
||||
class CodeTransService(Gateway):
|
||||
def __init__(self, host="0.0.0.0", port=8000):
|
||||
self.host = host
|
||||
self.port = port
|
||||
@@ -27,9 +35,59 @@ class CodeTransService:
|
||||
use_remote_service=True,
|
||||
)
|
||||
self.megaservice.add(llm)
|
||||
self.gateway = CodeTransGateway(megaservice=self.megaservice, host="0.0.0.0", port=self.port)
|
||||
|
||||
async def handle_request(self, request: Request):
|
||||
data = await request.json()
|
||||
language_from = data["language_from"]
|
||||
language_to = data["language_to"]
|
||||
source_code = data["source_code"]
|
||||
prompt_template = """
|
||||
### System: Please translate the following {language_from} codes into {language_to} codes.
|
||||
|
||||
### Original codes:
|
||||
'''{language_from}
|
||||
|
||||
{source_code}
|
||||
|
||||
'''
|
||||
|
||||
### Translated codes:
|
||||
"""
|
||||
prompt = prompt_template.format(language_from=language_from, language_to=language_to, source_code=source_code)
|
||||
result_dict, runtime_graph = await self.megaservice.schedule(initial_inputs={"query": prompt})
|
||||
for node, response in result_dict.items():
|
||||
# Here it suppose the last microservice in the megaservice is LLM.
|
||||
if (
|
||||
isinstance(response, StreamingResponse)
|
||||
and node == list(self.megaservice.services.keys())[-1]
|
||||
and self.megaservice.services[node].service_type == ServiceType.LLM
|
||||
):
|
||||
return response
|
||||
last_node = runtime_graph.all_leaves()[-1]
|
||||
response = result_dict[last_node]["text"]
|
||||
choices = []
|
||||
usage = UsageInfo()
|
||||
choices.append(
|
||||
ChatCompletionResponseChoice(
|
||||
index=0,
|
||||
message=ChatMessage(role="assistant", content=response),
|
||||
finish_reason="stop",
|
||||
)
|
||||
)
|
||||
return ChatCompletionResponse(model="codetrans", choices=choices, usage=usage)
|
||||
|
||||
def start(self):
|
||||
super().__init__(
|
||||
megaservice=self.megaservice,
|
||||
host=self.host,
|
||||
port=self.port,
|
||||
endpoint=str(MegaServiceEndpoint.CODE_TRANS),
|
||||
input_datatype=ChatCompletionRequest,
|
||||
output_datatype=ChatCompletionResponse,
|
||||
)
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
service_ochestrator = CodeTransService(host=MEGA_SERVICE_HOST_IP, port=MEGA_SERVICE_PORT)
|
||||
service_ochestrator = CodeTransService(port=MEGA_SERVICE_PORT)
|
||||
service_ochestrator.add_remote_service()
|
||||
service_ochestrator.start()
|
||||
|
||||
@@ -3,10 +3,14 @@
|
||||
|
||||
import asyncio
|
||||
import os
|
||||
from typing import Union
|
||||
|
||||
from comps import MicroService, RetrievalToolGateway, ServiceOrchestrator, ServiceType
|
||||
from comps import Gateway, MegaServiceEndpoint, MicroService, ServiceOrchestrator, ServiceType
|
||||
from comps.cores.proto.api_protocol import ChatCompletionRequest, EmbeddingRequest
|
||||
from comps.cores.proto.docarray import LLMParamsDoc, RerankedDoc, RerankerParms, RetrieverParms, TextDoc
|
||||
from fastapi import Request
|
||||
from fastapi.responses import StreamingResponse
|
||||
|
||||
MEGA_SERVICE_HOST_IP = os.getenv("MEGA_SERVICE_HOST_IP", "0.0.0.0")
|
||||
MEGA_SERVICE_PORT = os.getenv("MEGA_SERVICE_PORT", 8889)
|
||||
EMBEDDING_SERVICE_HOST_IP = os.getenv("EMBEDDING_SERVICE_HOST_IP", "0.0.0.0")
|
||||
EMBEDDING_SERVICE_PORT = os.getenv("EMBEDDING_SERVICE_PORT", 6000)
|
||||
@@ -16,7 +20,7 @@ RERANK_SERVICE_HOST_IP = os.getenv("RERANK_SERVICE_HOST_IP", "0.0.0.0")
|
||||
RERANK_SERVICE_PORT = os.getenv("RERANK_SERVICE_PORT", 8000)
|
||||
|
||||
|
||||
class RetrievalToolService:
|
||||
class RetrievalToolService(Gateway):
|
||||
def __init__(self, host="0.0.0.0", port=8000):
|
||||
self.host = host
|
||||
self.port = port
|
||||
@@ -51,9 +55,77 @@ class RetrievalToolService:
|
||||
self.megaservice.add(embedding).add(retriever).add(rerank)
|
||||
self.megaservice.flow_to(embedding, retriever)
|
||||
self.megaservice.flow_to(retriever, rerank)
|
||||
self.gateway = RetrievalToolGateway(megaservice=self.megaservice, host="0.0.0.0", port=self.port)
|
||||
|
||||
async def handle_request(self, request: Request):
|
||||
def parser_input(data, TypeClass, key):
|
||||
chat_request = None
|
||||
try:
|
||||
chat_request = TypeClass.parse_obj(data)
|
||||
query = getattr(chat_request, key)
|
||||
except:
|
||||
query = None
|
||||
return query, chat_request
|
||||
|
||||
data = await request.json()
|
||||
query = None
|
||||
for key, TypeClass in zip(["text", "input", "messages"], [TextDoc, EmbeddingRequest, ChatCompletionRequest]):
|
||||
query, chat_request = parser_input(data, TypeClass, key)
|
||||
if query is not None:
|
||||
break
|
||||
if query is None:
|
||||
raise ValueError(f"Unknown request type: {data}")
|
||||
if chat_request is None:
|
||||
raise ValueError(f"Unknown request type: {data}")
|
||||
|
||||
if isinstance(chat_request, ChatCompletionRequest):
|
||||
retriever_parameters = RetrieverParms(
|
||||
search_type=chat_request.search_type if chat_request.search_type else "similarity",
|
||||
k=chat_request.k if chat_request.k else 4,
|
||||
distance_threshold=chat_request.distance_threshold if chat_request.distance_threshold else None,
|
||||
fetch_k=chat_request.fetch_k if chat_request.fetch_k else 20,
|
||||
lambda_mult=chat_request.lambda_mult if chat_request.lambda_mult else 0.5,
|
||||
score_threshold=chat_request.score_threshold if chat_request.score_threshold else 0.2,
|
||||
)
|
||||
reranker_parameters = RerankerParms(
|
||||
top_n=chat_request.top_n if chat_request.top_n else 1,
|
||||
)
|
||||
|
||||
initial_inputs = {
|
||||
"messages": query,
|
||||
"input": query, # has to be input due to embedding expects either input or text
|
||||
"search_type": chat_request.search_type if chat_request.search_type else "similarity",
|
||||
"k": chat_request.k if chat_request.k else 4,
|
||||
"distance_threshold": chat_request.distance_threshold if chat_request.distance_threshold else None,
|
||||
"fetch_k": chat_request.fetch_k if chat_request.fetch_k else 20,
|
||||
"lambda_mult": chat_request.lambda_mult if chat_request.lambda_mult else 0.5,
|
||||
"score_threshold": chat_request.score_threshold if chat_request.score_threshold else 0.2,
|
||||
"top_n": chat_request.top_n if chat_request.top_n else 1,
|
||||
}
|
||||
|
||||
result_dict, runtime_graph = await self.megaservice.schedule(
|
||||
initial_inputs=initial_inputs,
|
||||
retriever_parameters=retriever_parameters,
|
||||
reranker_parameters=reranker_parameters,
|
||||
)
|
||||
else:
|
||||
result_dict, runtime_graph = await self.megaservice.schedule(initial_inputs={"text": query})
|
||||
|
||||
last_node = runtime_graph.all_leaves()[-1]
|
||||
response = result_dict[last_node]
|
||||
return response
|
||||
|
||||
def start(self):
|
||||
super().__init__(
|
||||
megaservice=self.megaservice,
|
||||
host=self.host,
|
||||
port=self.port,
|
||||
endpoint=str(MegaServiceEndpoint.RETRIEVALTOOL),
|
||||
input_datatype=Union[TextDoc, EmbeddingRequest, ChatCompletionRequest],
|
||||
output_datatype=Union[RerankedDoc, LLMParamsDoc],
|
||||
)
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
chatqna = RetrievalToolService(host=MEGA_SERVICE_HOST_IP, port=MEGA_SERVICE_PORT)
|
||||
chatqna = RetrievalToolService(port=MEGA_SERVICE_PORT)
|
||||
chatqna.add_remote_service()
|
||||
chatqna.start()
|
||||
|
||||
127
DocSum/docsum.py
127
DocSum/docsum.py
@@ -3,10 +3,21 @@
|
||||
|
||||
import asyncio
|
||||
import os
|
||||
from typing import List
|
||||
|
||||
from comps import DocSumGateway, MicroService, ServiceOrchestrator, ServiceType
|
||||
from comps import Gateway, MegaServiceEndpoint, MicroService, ServiceOrchestrator, ServiceType
|
||||
from comps.cores.mega.gateway import read_text_from_file
|
||||
from comps.cores.proto.api_protocol import (
|
||||
ChatCompletionRequest,
|
||||
ChatCompletionResponse,
|
||||
ChatCompletionResponseChoice,
|
||||
ChatMessage,
|
||||
UsageInfo,
|
||||
)
|
||||
from comps.cores.proto.docarray import LLMParams
|
||||
from fastapi import File, Request, UploadFile
|
||||
from fastapi.responses import StreamingResponse
|
||||
|
||||
MEGA_SERVICE_HOST_IP = os.getenv("MEGA_SERVICE_HOST_IP", "0.0.0.0")
|
||||
MEGA_SERVICE_PORT = int(os.getenv("MEGA_SERVICE_PORT", 8888))
|
||||
|
||||
DATA_SERVICE_HOST_IP = os.getenv("DATA_SERVICE_HOST_IP", "0.0.0.0")
|
||||
@@ -16,7 +27,7 @@ LLM_SERVICE_HOST_IP = os.getenv("LLM_SERVICE_HOST_IP", "0.0.0.0")
|
||||
LLM_SERVICE_PORT = int(os.getenv("LLM_SERVICE_PORT", 9000))
|
||||
|
||||
|
||||
class DocSumService:
|
||||
class DocSumService(Gateway):
|
||||
def __init__(self, host="0.0.0.0", port=8000):
|
||||
self.host = host
|
||||
self.port = port
|
||||
@@ -41,12 +52,114 @@ class DocSumService:
|
||||
use_remote_service=True,
|
||||
service_type=ServiceType.LLM,
|
||||
)
|
||||
self.megaservice.add(llm)
|
||||
|
||||
self.megaservice.add(data).add(llm)
|
||||
self.megaservice.flow_to(data, llm)
|
||||
self.gateway = DocSumGateway(megaservice=self.megaservice, host="0.0.0.0", port=self.port)
|
||||
async def handle_request(self, request: Request, files: List[UploadFile] = File(default=None)):
|
||||
|
||||
if "application/json" in request.headers.get("content-type"):
|
||||
data = await request.json()
|
||||
stream_opt = data.get("stream", True)
|
||||
chat_request = ChatCompletionRequest.model_validate(data)
|
||||
prompt = self._handle_message(chat_request.messages)
|
||||
|
||||
initial_inputs_data = {data["type"]: prompt}
|
||||
|
||||
elif "multipart/form-data" in request.headers.get("content-type"):
|
||||
data = await request.form()
|
||||
stream_opt = data.get("stream", True)
|
||||
chat_request = ChatCompletionRequest.model_validate(data)
|
||||
|
||||
data_type = data.get("type")
|
||||
|
||||
file_summaries = []
|
||||
if files:
|
||||
for file in files:
|
||||
file_path = f"/tmp/{file.filename}"
|
||||
|
||||
if data_type is not None and data_type in ["audio", "video"]:
|
||||
raise ValueError(
|
||||
"Audio and Video file uploads are not supported in docsum with curl request, please use the UI."
|
||||
)
|
||||
|
||||
else:
|
||||
import aiofiles
|
||||
|
||||
async with aiofiles.open(file_path, "wb") as f:
|
||||
await f.write(await file.read())
|
||||
|
||||
docs = read_text_from_file(file, file_path)
|
||||
os.remove(file_path)
|
||||
|
||||
if isinstance(docs, list):
|
||||
file_summaries.extend(docs)
|
||||
else:
|
||||
file_summaries.append(docs)
|
||||
|
||||
if file_summaries:
|
||||
prompt = self._handle_message(chat_request.messages) + "\n".join(file_summaries)
|
||||
else:
|
||||
prompt = self._handle_message(chat_request.messages)
|
||||
|
||||
data_type = data.get("type")
|
||||
if data_type is not None:
|
||||
initial_inputs_data = {}
|
||||
initial_inputs_data[data_type] = prompt
|
||||
else:
|
||||
initial_inputs_data = {"query": prompt}
|
||||
|
||||
else:
|
||||
raise ValueError(f"Unknown request type: {request.headers.get('content-type')}")
|
||||
|
||||
parameters = LLMParams(
|
||||
max_tokens=chat_request.max_tokens if chat_request.max_tokens else 1024,
|
||||
top_k=chat_request.top_k if chat_request.top_k else 10,
|
||||
top_p=chat_request.top_p if chat_request.top_p else 0.95,
|
||||
temperature=chat_request.temperature if chat_request.temperature else 0.01,
|
||||
frequency_penalty=chat_request.frequency_penalty if chat_request.frequency_penalty else 0.0,
|
||||
presence_penalty=chat_request.presence_penalty if chat_request.presence_penalty else 0.0,
|
||||
repetition_penalty=chat_request.repetition_penalty if chat_request.repetition_penalty else 1.03,
|
||||
streaming=stream_opt,
|
||||
model=chat_request.model if chat_request.model else None,
|
||||
language=chat_request.language if chat_request.language else "auto",
|
||||
)
|
||||
|
||||
result_dict, runtime_graph = await self.megaservice.schedule(
|
||||
initial_inputs=initial_inputs_data, llm_parameters=parameters
|
||||
)
|
||||
|
||||
for node, response in result_dict.items():
|
||||
# Here it suppose the last microservice in the megaservice is LLM.
|
||||
if (
|
||||
isinstance(response, StreamingResponse)
|
||||
and node == list(self.megaservice.services.keys())[-1]
|
||||
and self.megaservice.services[node].service_type == ServiceType.LLM
|
||||
):
|
||||
return response
|
||||
last_node = runtime_graph.all_leaves()[-1]
|
||||
response = result_dict[last_node]["text"]
|
||||
choices = []
|
||||
usage = UsageInfo()
|
||||
choices.append(
|
||||
ChatCompletionResponseChoice(
|
||||
index=0,
|
||||
message=ChatMessage(role="assistant", content=response),
|
||||
finish_reason="stop",
|
||||
)
|
||||
)
|
||||
return ChatCompletionResponse(model="docsum", choices=choices, usage=usage)
|
||||
|
||||
def start(self):
|
||||
super().__init__(
|
||||
megaservice=self.megaservice,
|
||||
host=self.host,
|
||||
port=self.port,
|
||||
endpoint=str(MegaServiceEndpoint.DOC_SUMMARY),
|
||||
input_datatype=ChatCompletionRequest,
|
||||
output_datatype=ChatCompletionResponse,
|
||||
)
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
docsum = DocSumService(host=MEGA_SERVICE_HOST_IP, port=MEGA_SERVICE_PORT)
|
||||
docsum = DocSumService(port=MEGA_SERVICE_PORT)
|
||||
docsum.add_remote_service()
|
||||
docsum.start()
|
||||
|
||||
@@ -5,7 +5,6 @@ import os
|
||||
|
||||
from comps import MicroService, ServiceOrchestrator, ServiceType
|
||||
|
||||
MEGA_SERVICE_HOST_IP = os.getenv("MEGA_SERVICE_HOST_IP", "127.0.0.1")
|
||||
MEGA_SERVICE_PORT = int(os.getenv("MEGA_SERVICE_PORT", 16011))
|
||||
PIPELINE_SERVICE_HOST_IP = os.getenv("PIPELINE_SERVICE_HOST_IP", "127.0.0.1")
|
||||
PIPELINE_SERVICE_PORT = int(os.getenv("PIPELINE_SERVICE_PORT", 16010))
|
||||
@@ -23,11 +22,22 @@ from fastapi import Request
|
||||
from fastapi.responses import StreamingResponse
|
||||
|
||||
|
||||
class EdgeCraftRagGateway(Gateway):
|
||||
def __init__(self, megaservice, host="0.0.0.0", port=16011):
|
||||
super().__init__(
|
||||
megaservice, host, port, str(MegaServiceEndpoint.CHAT_QNA), ChatCompletionRequest, ChatCompletionResponse
|
||||
class EdgeCraftRagService(Gateway):
|
||||
def __init__(self, host="0.0.0.0", port=16010):
|
||||
self.host = host
|
||||
self.port = port
|
||||
self.megaservice = ServiceOrchestrator()
|
||||
|
||||
def add_remote_service(self):
|
||||
edgecraftrag = MicroService(
|
||||
name="pipeline",
|
||||
host=PIPELINE_SERVICE_HOST_IP,
|
||||
port=PIPELINE_SERVICE_PORT,
|
||||
endpoint="/v1/chatqna",
|
||||
use_remote_service=True,
|
||||
service_type=ServiceType.LLM,
|
||||
)
|
||||
self.megaservice.add(edgecraftrag)
|
||||
|
||||
async def handle_request(self, request: Request):
|
||||
input = await request.json()
|
||||
@@ -61,26 +71,18 @@ class EdgeCraftRagGateway(Gateway):
|
||||
)
|
||||
return ChatCompletionResponse(model="edgecraftrag", choices=choices, usage=usage)
|
||||
|
||||
|
||||
class EdgeCraftRagService:
|
||||
def __init__(self, host="0.0.0.0", port=16010):
|
||||
self.host = host
|
||||
self.port = port
|
||||
self.megaservice = ServiceOrchestrator()
|
||||
|
||||
def add_remote_service(self):
|
||||
edgecraftrag = MicroService(
|
||||
name="pipeline",
|
||||
host=PIPELINE_SERVICE_HOST_IP,
|
||||
port=PIPELINE_SERVICE_PORT,
|
||||
endpoint="/v1/chatqna",
|
||||
use_remote_service=True,
|
||||
service_type=ServiceType.LLM,
|
||||
def start(self):
|
||||
super().__init__(
|
||||
megaservice=self.megaservice,
|
||||
host=self.host,
|
||||
port=self.port,
|
||||
endpoint=str(MegaServiceEndpoint.CHAT_QNA),
|
||||
input_datatype=ChatCompletionRequest,
|
||||
output_datatype=ChatCompletionResponse,
|
||||
)
|
||||
self.megaservice.add(edgecraftrag)
|
||||
self.gateway = EdgeCraftRagGateway(megaservice=self.megaservice, host="0.0.0.0", port=self.port)
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
edgecraftrag = EdgeCraftRagService(host=MEGA_SERVICE_HOST_IP, port=MEGA_SERVICE_PORT)
|
||||
edgecraftrag = EdgeCraftRagService(port=MEGA_SERVICE_PORT)
|
||||
edgecraftrag.add_remote_service()
|
||||
edgecraftrag.start()
|
||||
|
||||
@@ -3,16 +3,27 @@
|
||||
|
||||
import asyncio
|
||||
import os
|
||||
from typing import List
|
||||
|
||||
from comps import FaqGenGateway, MicroService, ServiceOrchestrator, ServiceType
|
||||
from comps import Gateway, MegaServiceEndpoint, MicroService, ServiceOrchestrator, ServiceType
|
||||
from comps.cores.mega.gateway import read_text_from_file
|
||||
from comps.cores.proto.api_protocol import (
|
||||
ChatCompletionRequest,
|
||||
ChatCompletionResponse,
|
||||
ChatCompletionResponseChoice,
|
||||
ChatMessage,
|
||||
UsageInfo,
|
||||
)
|
||||
from comps.cores.proto.docarray import LLMParams
|
||||
from fastapi import File, Request, UploadFile
|
||||
from fastapi.responses import StreamingResponse
|
||||
|
||||
MEGA_SERVICE_HOST_IP = os.getenv("MEGA_SERVICE_HOST_IP", "0.0.0.0")
|
||||
MEGA_SERVICE_PORT = int(os.getenv("MEGA_SERVICE_PORT", 8888))
|
||||
LLM_SERVICE_HOST_IP = os.getenv("LLM_SERVICE_HOST_IP", "0.0.0.0")
|
||||
LLM_SERVICE_PORT = int(os.getenv("LLM_SERVICE_PORT", 9000))
|
||||
|
||||
|
||||
class FaqGenService:
|
||||
class FaqGenService(Gateway):
|
||||
def __init__(self, host="0.0.0.0", port=8000):
|
||||
self.host = host
|
||||
self.port = port
|
||||
@@ -28,9 +39,79 @@ class FaqGenService:
|
||||
service_type=ServiceType.LLM,
|
||||
)
|
||||
self.megaservice.add(llm)
|
||||
self.gateway = FaqGenGateway(megaservice=self.megaservice, host="0.0.0.0", port=self.port)
|
||||
|
||||
async def handle_request(self, request: Request, files: List[UploadFile] = File(default=None)):
|
||||
data = await request.form()
|
||||
stream_opt = data.get("stream", True)
|
||||
chat_request = ChatCompletionRequest.parse_obj(data)
|
||||
file_summaries = []
|
||||
if files:
|
||||
for file in files:
|
||||
file_path = f"/tmp/{file.filename}"
|
||||
|
||||
import aiofiles
|
||||
|
||||
async with aiofiles.open(file_path, "wb") as f:
|
||||
await f.write(await file.read())
|
||||
docs = read_text_from_file(file, file_path)
|
||||
os.remove(file_path)
|
||||
if isinstance(docs, list):
|
||||
file_summaries.extend(docs)
|
||||
else:
|
||||
file_summaries.append(docs)
|
||||
|
||||
if file_summaries:
|
||||
prompt = self._handle_message(chat_request.messages) + "\n".join(file_summaries)
|
||||
else:
|
||||
prompt = self._handle_message(chat_request.messages)
|
||||
|
||||
parameters = LLMParams(
|
||||
max_tokens=chat_request.max_tokens if chat_request.max_tokens else 1024,
|
||||
top_k=chat_request.top_k if chat_request.top_k else 10,
|
||||
top_p=chat_request.top_p if chat_request.top_p else 0.95,
|
||||
temperature=chat_request.temperature if chat_request.temperature else 0.01,
|
||||
frequency_penalty=chat_request.frequency_penalty if chat_request.frequency_penalty else 0.0,
|
||||
presence_penalty=chat_request.presence_penalty if chat_request.presence_penalty else 0.0,
|
||||
repetition_penalty=chat_request.repetition_penalty if chat_request.repetition_penalty else 1.03,
|
||||
streaming=stream_opt,
|
||||
model=chat_request.model if chat_request.model else None,
|
||||
)
|
||||
result_dict, runtime_graph = await self.megaservice.schedule(
|
||||
initial_inputs={"query": prompt}, llm_parameters=parameters
|
||||
)
|
||||
for node, response in result_dict.items():
|
||||
# Here it suppose the last microservice in the megaservice is LLM.
|
||||
if (
|
||||
isinstance(response, StreamingResponse)
|
||||
and node == list(self.megaservice.services.keys())[-1]
|
||||
and self.megaservice.services[node].service_type == ServiceType.LLM
|
||||
):
|
||||
return response
|
||||
last_node = runtime_graph.all_leaves()[-1]
|
||||
response = result_dict[last_node]["text"]
|
||||
choices = []
|
||||
usage = UsageInfo()
|
||||
choices.append(
|
||||
ChatCompletionResponseChoice(
|
||||
index=0,
|
||||
message=ChatMessage(role="assistant", content=response),
|
||||
finish_reason="stop",
|
||||
)
|
||||
)
|
||||
return ChatCompletionResponse(model="faqgen", choices=choices, usage=usage)
|
||||
|
||||
def start(self):
|
||||
super().__init__(
|
||||
megaservice=self.megaservice,
|
||||
host=self.host,
|
||||
port=self.port,
|
||||
endpoint=str(MegaServiceEndpoint.FAQ_GEN),
|
||||
input_datatype=ChatCompletionRequest,
|
||||
output_datatype=ChatCompletionResponse,
|
||||
)
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
faqgen = FaqGenService(host=MEGA_SERVICE_HOST_IP, port=MEGA_SERVICE_PORT)
|
||||
faqgen = FaqGenService(port=MEGA_SERVICE_PORT)
|
||||
faqgen.add_remote_service()
|
||||
faqgen.start()
|
||||
|
||||
@@ -6,7 +6,18 @@ import json
|
||||
import os
|
||||
import re
|
||||
|
||||
from comps import GraphragGateway, MicroService, ServiceOrchestrator, ServiceType
|
||||
from comps import Gateway, MegaServiceEndpoint, MicroService, ServiceOrchestrator, ServiceType
|
||||
from comps.cores.proto.api_protocol import (
|
||||
ChatCompletionRequest,
|
||||
ChatCompletionResponse,
|
||||
ChatCompletionResponseChoice,
|
||||
ChatMessage,
|
||||
EmbeddingRequest,
|
||||
UsageInfo,
|
||||
)
|
||||
from comps.cores.proto.docarray import LLMParams, RetrieverParms, TextDoc
|
||||
from fastapi import Request
|
||||
from fastapi.responses import StreamingResponse
|
||||
from langchain_core.prompts import PromptTemplate
|
||||
|
||||
|
||||
@@ -35,7 +46,6 @@ If you don't know the answer to a question, please don't share false information
|
||||
return template.format(context=context_str, question=question)
|
||||
|
||||
|
||||
MEGA_SERVICE_HOST_IP = os.getenv("MEGA_SERVICE_HOST_IP", "0.0.0.0")
|
||||
MEGA_SERVICE_PORT = int(os.getenv("MEGA_SERVICE_PORT", 8888))
|
||||
RETRIEVER_SERVICE_HOST_IP = os.getenv("RETRIEVER_SERVICE_HOST_IP", "0.0.0.0")
|
||||
RETRIEVER_SERVICE_PORT = int(os.getenv("RETRIEVER_SERVICE_PORT", 7000))
|
||||
@@ -117,7 +127,7 @@ def align_generator(self, gen, **kwargs):
|
||||
yield "data: [DONE]\n\n"
|
||||
|
||||
|
||||
class GraphRAGService:
|
||||
class GraphRAGService(Gateway):
|
||||
def __init__(self, host="0.0.0.0", port=8000):
|
||||
self.host = host
|
||||
self.port = port
|
||||
@@ -146,9 +156,84 @@ class GraphRAGService:
|
||||
)
|
||||
self.megaservice.add(retriever).add(llm)
|
||||
self.megaservice.flow_to(retriever, llm)
|
||||
self.gateway = GraphragGateway(megaservice=self.megaservice, host="0.0.0.0", port=self.port)
|
||||
|
||||
async def handle_request(self, request: Request):
|
||||
data = await request.json()
|
||||
stream_opt = data.get("stream", True)
|
||||
chat_request = ChatCompletionRequest.parse_obj(data)
|
||||
|
||||
def parser_input(data, TypeClass, key):
|
||||
chat_request = None
|
||||
try:
|
||||
chat_request = TypeClass.parse_obj(data)
|
||||
query = getattr(chat_request, key)
|
||||
except:
|
||||
query = None
|
||||
return query, chat_request
|
||||
|
||||
query = None
|
||||
for key, TypeClass in zip(["text", "input", "messages"], [TextDoc, EmbeddingRequest, ChatCompletionRequest]):
|
||||
query, chat_request = parser_input(data, TypeClass, key)
|
||||
if query is not None:
|
||||
break
|
||||
if query is None:
|
||||
raise ValueError(f"Unknown request type: {data}")
|
||||
if chat_request is None:
|
||||
raise ValueError(f"Unknown request type: {data}")
|
||||
prompt = self._handle_message(chat_request.messages)
|
||||
parameters = LLMParams(
|
||||
max_tokens=chat_request.max_tokens if chat_request.max_tokens else 1024,
|
||||
top_k=chat_request.top_k if chat_request.top_k else 10,
|
||||
top_p=chat_request.top_p if chat_request.top_p else 0.95,
|
||||
temperature=chat_request.temperature if chat_request.temperature else 0.01,
|
||||
frequency_penalty=chat_request.frequency_penalty if chat_request.frequency_penalty else 0.0,
|
||||
presence_penalty=chat_request.presence_penalty if chat_request.presence_penalty else 0.0,
|
||||
repetition_penalty=chat_request.repetition_penalty if chat_request.repetition_penalty else 1.03,
|
||||
streaming=stream_opt,
|
||||
chat_template=chat_request.chat_template if chat_request.chat_template else None,
|
||||
)
|
||||
retriever_parameters = RetrieverParms(
|
||||
search_type=chat_request.search_type if chat_request.search_type else "similarity",
|
||||
k=chat_request.k if chat_request.k else 4,
|
||||
distance_threshold=chat_request.distance_threshold if chat_request.distance_threshold else None,
|
||||
fetch_k=chat_request.fetch_k if chat_request.fetch_k else 20,
|
||||
lambda_mult=chat_request.lambda_mult if chat_request.lambda_mult else 0.5,
|
||||
score_threshold=chat_request.score_threshold if chat_request.score_threshold else 0.2,
|
||||
)
|
||||
initial_inputs = chat_request
|
||||
result_dict, runtime_graph = await self.megaservice.schedule(
|
||||
initial_inputs=initial_inputs,
|
||||
llm_parameters=parameters,
|
||||
retriever_parameters=retriever_parameters,
|
||||
)
|
||||
for node, response in result_dict.items():
|
||||
if isinstance(response, StreamingResponse):
|
||||
return response
|
||||
last_node = runtime_graph.all_leaves()[-1]
|
||||
response_content = result_dict[last_node]["choices"][0]["message"]["content"]
|
||||
choices = []
|
||||
usage = UsageInfo()
|
||||
choices.append(
|
||||
ChatCompletionResponseChoice(
|
||||
index=0,
|
||||
message=ChatMessage(role="assistant", content=response_content),
|
||||
finish_reason="stop",
|
||||
)
|
||||
)
|
||||
return ChatCompletionResponse(model="chatqna", choices=choices, usage=usage)
|
||||
|
||||
def start(self):
|
||||
super().__init__(
|
||||
megaservice=self.megaservice,
|
||||
host=self.host,
|
||||
port=self.port,
|
||||
endpoint=str(MegaServiceEndpoint.GRAPH_RAG),
|
||||
input_datatype=ChatCompletionRequest,
|
||||
output_datatype=ChatCompletionResponse,
|
||||
)
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
graphrag = GraphRAGService(host=MEGA_SERVICE_HOST_IP, port=MEGA_SERVICE_PORT)
|
||||
graphrag = GraphRAGService(port=MEGA_SERVICE_PORT)
|
||||
graphrag.add_remote_service()
|
||||
graphrag.start()
|
||||
|
||||
@@ -1,11 +1,24 @@
|
||||
# Copyright (C) 2024 Intel Corporation
|
||||
# SPDX-License-Identifier: Apache-2.0
|
||||
|
||||
import base64
|
||||
import os
|
||||
from io import BytesIO
|
||||
|
||||
from comps import MicroService, MultimodalQnAGateway, ServiceOrchestrator, ServiceType
|
||||
import requests
|
||||
from comps import Gateway, MegaServiceEndpoint, MicroService, ServiceOrchestrator, ServiceType
|
||||
from comps.cores.proto.api_protocol import (
|
||||
ChatCompletionRequest,
|
||||
ChatCompletionResponse,
|
||||
ChatCompletionResponseChoice,
|
||||
ChatMessage,
|
||||
UsageInfo,
|
||||
)
|
||||
from comps.cores.proto.docarray import LLMParams
|
||||
from fastapi import Request
|
||||
from fastapi.responses import StreamingResponse
|
||||
from PIL import Image
|
||||
|
||||
MEGA_SERVICE_HOST_IP = os.getenv("MEGA_SERVICE_HOST_IP", "0.0.0.0")
|
||||
MEGA_SERVICE_PORT = int(os.getenv("MEGA_SERVICE_PORT", 8888))
|
||||
MM_EMBEDDING_SERVICE_HOST_IP = os.getenv("MM_EMBEDDING_SERVICE_HOST_IP", "0.0.0.0")
|
||||
MM_EMBEDDING_PORT_MICROSERVICE = int(os.getenv("MM_EMBEDDING_PORT_MICROSERVICE", 6000))
|
||||
@@ -15,12 +28,12 @@ LVM_SERVICE_HOST_IP = os.getenv("LVM_SERVICE_HOST_IP", "0.0.0.0")
|
||||
LVM_SERVICE_PORT = int(os.getenv("LVM_SERVICE_PORT", 9399))
|
||||
|
||||
|
||||
class MultimodalQnAService:
|
||||
class MultimodalQnAService(Gateway):
|
||||
def __init__(self, host="0.0.0.0", port=8000):
|
||||
self.host = host
|
||||
self.port = port
|
||||
self.mmrag_megaservice = ServiceOrchestrator()
|
||||
self.lvm_megaservice = ServiceOrchestrator()
|
||||
self.megaservice = ServiceOrchestrator()
|
||||
|
||||
def add_remote_service(self):
|
||||
mm_embedding = MicroService(
|
||||
@@ -50,21 +63,186 @@ class MultimodalQnAService:
|
||||
)
|
||||
|
||||
# for mmrag megaservice
|
||||
self.mmrag_megaservice.add(mm_embedding).add(mm_retriever).add(lvm)
|
||||
self.mmrag_megaservice.flow_to(mm_embedding, mm_retriever)
|
||||
self.mmrag_megaservice.flow_to(mm_retriever, lvm)
|
||||
self.megaservice.add(mm_embedding).add(mm_retriever).add(lvm)
|
||||
self.megaservice.flow_to(mm_embedding, mm_retriever)
|
||||
self.megaservice.flow_to(mm_retriever, lvm)
|
||||
|
||||
# for lvm megaservice
|
||||
self.lvm_megaservice.add(lvm)
|
||||
|
||||
self.gateway = MultimodalQnAGateway(
|
||||
multimodal_rag_megaservice=self.mmrag_megaservice,
|
||||
lvm_megaservice=self.lvm_megaservice,
|
||||
host="0.0.0.0",
|
||||
# this overrides _handle_message method of Gateway
|
||||
def _handle_message(self, messages):
|
||||
images = []
|
||||
messages_dicts = []
|
||||
if isinstance(messages, str):
|
||||
prompt = messages
|
||||
else:
|
||||
messages_dict = {}
|
||||
system_prompt = ""
|
||||
prompt = ""
|
||||
for message in messages:
|
||||
msg_role = message["role"]
|
||||
messages_dict = {}
|
||||
if msg_role == "system":
|
||||
system_prompt = message["content"]
|
||||
elif msg_role == "user":
|
||||
if type(message["content"]) == list:
|
||||
text = ""
|
||||
text_list = [item["text"] for item in message["content"] if item["type"] == "text"]
|
||||
text += "\n".join(text_list)
|
||||
image_list = [
|
||||
item["image_url"]["url"] for item in message["content"] if item["type"] == "image_url"
|
||||
]
|
||||
if image_list:
|
||||
messages_dict[msg_role] = (text, image_list)
|
||||
else:
|
||||
messages_dict[msg_role] = text
|
||||
else:
|
||||
messages_dict[msg_role] = message["content"]
|
||||
messages_dicts.append(messages_dict)
|
||||
elif msg_role == "assistant":
|
||||
messages_dict[msg_role] = message["content"]
|
||||
messages_dicts.append(messages_dict)
|
||||
else:
|
||||
raise ValueError(f"Unknown role: {msg_role}")
|
||||
|
||||
if system_prompt:
|
||||
prompt = system_prompt + "\n"
|
||||
for messages_dict in messages_dicts:
|
||||
for i, (role, message) in enumerate(messages_dict.items()):
|
||||
if isinstance(message, tuple):
|
||||
text, image_list = message
|
||||
if i == 0:
|
||||
# do not add role for the very first message.
|
||||
# this will be added by llava_server
|
||||
if text:
|
||||
prompt += text + "\n"
|
||||
else:
|
||||
if text:
|
||||
prompt += role.upper() + ": " + text + "\n"
|
||||
else:
|
||||
prompt += role.upper() + ":"
|
||||
for img in image_list:
|
||||
# URL
|
||||
if img.startswith("http://") or img.startswith("https://"):
|
||||
response = requests.get(img)
|
||||
image = Image.open(BytesIO(response.content)).convert("RGBA")
|
||||
image_bytes = BytesIO()
|
||||
image.save(image_bytes, format="PNG")
|
||||
img_b64_str = base64.b64encode(image_bytes.getvalue()).decode()
|
||||
# Local Path
|
||||
elif os.path.exists(img):
|
||||
image = Image.open(img).convert("RGBA")
|
||||
image_bytes = BytesIO()
|
||||
image.save(image_bytes, format="PNG")
|
||||
img_b64_str = base64.b64encode(image_bytes.getvalue()).decode()
|
||||
# Bytes
|
||||
else:
|
||||
img_b64_str = img
|
||||
|
||||
images.append(img_b64_str)
|
||||
else:
|
||||
if i == 0:
|
||||
# do not add role for the very first message.
|
||||
# this will be added by llava_server
|
||||
if message:
|
||||
prompt += role.upper() + ": " + message + "\n"
|
||||
else:
|
||||
if message:
|
||||
prompt += role.upper() + ": " + message + "\n"
|
||||
else:
|
||||
prompt += role.upper() + ":"
|
||||
if images:
|
||||
return prompt, images
|
||||
else:
|
||||
return prompt
|
||||
|
||||
async def handle_request(self, request: Request):
|
||||
data = await request.json()
|
||||
stream_opt = bool(data.get("stream", False))
|
||||
if stream_opt:
|
||||
print("[ MultimodalQnAService ] stream=True not used, this has not support streaming yet!")
|
||||
stream_opt = False
|
||||
chat_request = ChatCompletionRequest.model_validate(data)
|
||||
# Multimodal RAG QnA With Videos has not yet accepts image as input during QnA.
|
||||
prompt_and_image = self._handle_message(chat_request.messages)
|
||||
if isinstance(prompt_and_image, tuple):
|
||||
# print(f"This request include image, thus it is a follow-up query. Using lvm megaservice")
|
||||
prompt, images = prompt_and_image
|
||||
cur_megaservice = self.lvm_megaservice
|
||||
initial_inputs = {"prompt": prompt, "image": images[0]}
|
||||
else:
|
||||
# print(f"This is the first query, requiring multimodal retrieval. Using multimodal rag megaservice")
|
||||
prompt = prompt_and_image
|
||||
cur_megaservice = self.megaservice
|
||||
initial_inputs = {"text": prompt}
|
||||
|
||||
parameters = LLMParams(
|
||||
max_new_tokens=chat_request.max_tokens if chat_request.max_tokens else 1024,
|
||||
top_k=chat_request.top_k if chat_request.top_k else 10,
|
||||
top_p=chat_request.top_p if chat_request.top_p else 0.95,
|
||||
temperature=chat_request.temperature if chat_request.temperature else 0.01,
|
||||
frequency_penalty=chat_request.frequency_penalty if chat_request.frequency_penalty else 0.0,
|
||||
presence_penalty=chat_request.presence_penalty if chat_request.presence_penalty else 0.0,
|
||||
repetition_penalty=chat_request.repetition_penalty if chat_request.repetition_penalty else 1.03,
|
||||
streaming=stream_opt,
|
||||
chat_template=chat_request.chat_template if chat_request.chat_template else None,
|
||||
)
|
||||
result_dict, runtime_graph = await cur_megaservice.schedule(
|
||||
initial_inputs=initial_inputs, llm_parameters=parameters
|
||||
)
|
||||
for node, response in result_dict.items():
|
||||
# the last microservice in this megaservice is LVM.
|
||||
# checking if LVM returns StreamingResponse
|
||||
# Currently, LVM with LLAVA has not yet supported streaming.
|
||||
# @TODO: Will need to test this once LVM with LLAVA supports streaming
|
||||
if (
|
||||
isinstance(response, StreamingResponse)
|
||||
and node == runtime_graph.all_leaves()[-1]
|
||||
and self.megaservice.services[node].service_type == ServiceType.LVM
|
||||
):
|
||||
return response
|
||||
last_node = runtime_graph.all_leaves()[-1]
|
||||
|
||||
if "text" in result_dict[last_node].keys():
|
||||
response = result_dict[last_node]["text"]
|
||||
else:
|
||||
# text in not response message
|
||||
# something wrong, for example due to empty retrieval results
|
||||
if "detail" in result_dict[last_node].keys():
|
||||
response = result_dict[last_node]["detail"]
|
||||
else:
|
||||
response = "The server fail to generate answer to your query!"
|
||||
if "metadata" in result_dict[last_node].keys():
|
||||
# from retrieval results
|
||||
metadata = result_dict[last_node]["metadata"]
|
||||
else:
|
||||
# follow-up question, no retrieval
|
||||
metadata = None
|
||||
choices = []
|
||||
usage = UsageInfo()
|
||||
choices.append(
|
||||
ChatCompletionResponseChoice(
|
||||
index=0,
|
||||
message=ChatMessage(role="assistant", content=response),
|
||||
finish_reason="stop",
|
||||
metadata=metadata,
|
||||
)
|
||||
)
|
||||
return ChatCompletionResponse(model="multimodalqna", choices=choices, usage=usage)
|
||||
|
||||
def start(self):
|
||||
super().__init__(
|
||||
megaservice=self.megaservice,
|
||||
host=self.host,
|
||||
port=self.port,
|
||||
endpoint=str(MegaServiceEndpoint.MULTIMODAL_QNA),
|
||||
input_datatype=ChatCompletionRequest,
|
||||
output_datatype=ChatCompletionResponse,
|
||||
)
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
mmragwithvideos = MultimodalQnAService(host=MEGA_SERVICE_HOST_IP, port=MEGA_SERVICE_PORT)
|
||||
mmragwithvideos = MultimodalQnAService(port=MEGA_SERVICE_PORT)
|
||||
mmragwithvideos.add_remote_service()
|
||||
mmragwithvideos.start()
|
||||
|
||||
@@ -3,9 +3,18 @@
|
||||
|
||||
import os
|
||||
|
||||
from comps import MicroService, SearchQnAGateway, ServiceOrchestrator, ServiceType
|
||||
from comps import Gateway, MegaServiceEndpoint, MicroService, ServiceOrchestrator, ServiceType
|
||||
from comps.cores.proto.api_protocol import (
|
||||
ChatCompletionRequest,
|
||||
ChatCompletionResponse,
|
||||
ChatCompletionResponseChoice,
|
||||
ChatMessage,
|
||||
UsageInfo,
|
||||
)
|
||||
from comps.cores.proto.docarray import LLMParams
|
||||
from fastapi import Request
|
||||
from fastapi.responses import StreamingResponse
|
||||
|
||||
MEGA_SERVICE_HOST_IP = os.getenv("MEGA_SERVICE_HOST_IP", "0.0.0.0")
|
||||
MEGA_SERVICE_PORT = int(os.getenv("MEGA_SERVICE_PORT", 8888))
|
||||
EMBEDDING_SERVICE_HOST_IP = os.getenv("EMBEDDING_SERVICE_HOST_IP", "0.0.0.0")
|
||||
EMBEDDING_SERVICE_PORT = int(os.getenv("EMBEDDING_SERVICE_PORT", 6000))
|
||||
@@ -17,7 +26,7 @@ LLM_SERVICE_HOST_IP = os.getenv("LLM_SERVICE_HOST_IP", "0.0.0.0")
|
||||
LLM_SERVICE_PORT = int(os.getenv("LLM_SERVICE_PORT", 9000))
|
||||
|
||||
|
||||
class SearchQnAService:
|
||||
class SearchQnAService(Gateway):
|
||||
def __init__(self, host="0.0.0.0", port=8000):
|
||||
self.host = host
|
||||
self.port = port
|
||||
@@ -60,9 +69,58 @@ class SearchQnAService:
|
||||
self.megaservice.flow_to(embedding, web_retriever)
|
||||
self.megaservice.flow_to(web_retriever, rerank)
|
||||
self.megaservice.flow_to(rerank, llm)
|
||||
self.gateway = SearchQnAGateway(megaservice=self.megaservice, host="0.0.0.0", port=self.port)
|
||||
|
||||
async def handle_request(self, request: Request):
|
||||
data = await request.json()
|
||||
stream_opt = data.get("stream", True)
|
||||
chat_request = ChatCompletionRequest.parse_obj(data)
|
||||
prompt = self._handle_message(chat_request.messages)
|
||||
parameters = LLMParams(
|
||||
max_tokens=chat_request.max_tokens if chat_request.max_tokens else 1024,
|
||||
top_k=chat_request.top_k if chat_request.top_k else 10,
|
||||
top_p=chat_request.top_p if chat_request.top_p else 0.95,
|
||||
temperature=chat_request.temperature if chat_request.temperature else 0.01,
|
||||
frequency_penalty=chat_request.frequency_penalty if chat_request.frequency_penalty else 0.0,
|
||||
presence_penalty=chat_request.presence_penalty if chat_request.presence_penalty else 0.0,
|
||||
repetition_penalty=chat_request.repetition_penalty if chat_request.repetition_penalty else 1.03,
|
||||
streaming=stream_opt,
|
||||
)
|
||||
result_dict, runtime_graph = await self.megaservice.schedule(
|
||||
initial_inputs={"text": prompt}, llm_parameters=parameters
|
||||
)
|
||||
for node, response in result_dict.items():
|
||||
# Here it suppose the last microservice in the megaservice is LLM.
|
||||
if (
|
||||
isinstance(response, StreamingResponse)
|
||||
and node == list(self.megaservice.services.keys())[-1]
|
||||
and self.megaservice.services[node].service_type == ServiceType.LLM
|
||||
):
|
||||
return response
|
||||
last_node = runtime_graph.all_leaves()[-1]
|
||||
response = result_dict[last_node]["text"]
|
||||
choices = []
|
||||
usage = UsageInfo()
|
||||
choices.append(
|
||||
ChatCompletionResponseChoice(
|
||||
index=0,
|
||||
message=ChatMessage(role="assistant", content=response),
|
||||
finish_reason="stop",
|
||||
)
|
||||
)
|
||||
return ChatCompletionResponse(model="searchqna", choices=choices, usage=usage)
|
||||
|
||||
def start(self):
|
||||
super().__init__(
|
||||
megaservice=self.megaservice,
|
||||
host=self.host,
|
||||
port=self.port,
|
||||
endpoint=str(MegaServiceEndpoint.SEARCH_QNA),
|
||||
input_datatype=ChatCompletionRequest,
|
||||
output_datatype=ChatCompletionResponse,
|
||||
)
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
searchqna = SearchQnAService(host=MEGA_SERVICE_HOST_IP, port=MEGA_SERVICE_PORT)
|
||||
searchqna = SearchQnAService(port=MEGA_SERVICE_PORT)
|
||||
searchqna.add_remote_service()
|
||||
searchqna.start()
|
||||
|
||||
@@ -15,15 +15,23 @@
|
||||
import asyncio
|
||||
import os
|
||||
|
||||
from comps import MicroService, ServiceOrchestrator, ServiceType, TranslationGateway
|
||||
from comps import Gateway, MegaServiceEndpoint, MicroService, ServiceOrchestrator, ServiceType
|
||||
from comps.cores.proto.api_protocol import (
|
||||
ChatCompletionRequest,
|
||||
ChatCompletionResponse,
|
||||
ChatCompletionResponseChoice,
|
||||
ChatMessage,
|
||||
UsageInfo,
|
||||
)
|
||||
from fastapi import Request
|
||||
from fastapi.responses import StreamingResponse
|
||||
|
||||
MEGA_SERVICE_HOST_IP = os.getenv("MEGA_SERVICE_HOST_IP", "0.0.0.0")
|
||||
MEGA_SERVICE_PORT = int(os.getenv("MEGA_SERVICE_PORT", 8888))
|
||||
LLM_SERVICE_HOST_IP = os.getenv("LLM_SERVICE_HOST_IP", "0.0.0.0")
|
||||
LLM_SERVICE_PORT = int(os.getenv("LLM_SERVICE_PORT", 9000))
|
||||
|
||||
|
||||
class TranslationService:
|
||||
class TranslationService(Gateway):
|
||||
def __init__(self, host="0.0.0.0", port=8000):
|
||||
self.host = host
|
||||
self.port = port
|
||||
@@ -39,9 +47,57 @@ class TranslationService:
|
||||
service_type=ServiceType.LLM,
|
||||
)
|
||||
self.megaservice.add(llm)
|
||||
self.gateway = TranslationGateway(megaservice=self.megaservice, host="0.0.0.0", port=self.port)
|
||||
|
||||
async def handle_request(self, request: Request):
|
||||
data = await request.json()
|
||||
language_from = data["language_from"]
|
||||
language_to = data["language_to"]
|
||||
source_language = data["source_language"]
|
||||
prompt_template = """
|
||||
Translate this from {language_from} to {language_to}:
|
||||
|
||||
{language_from}:
|
||||
{source_language}
|
||||
|
||||
{language_to}:
|
||||
"""
|
||||
prompt = prompt_template.format(
|
||||
language_from=language_from, language_to=language_to, source_language=source_language
|
||||
)
|
||||
result_dict, runtime_graph = await self.megaservice.schedule(initial_inputs={"query": prompt})
|
||||
for node, response in result_dict.items():
|
||||
# Here it suppose the last microservice in the megaservice is LLM.
|
||||
if (
|
||||
isinstance(response, StreamingResponse)
|
||||
and node == list(self.megaservice.services.keys())[-1]
|
||||
and self.megaservice.services[node].service_type == ServiceType.LLM
|
||||
):
|
||||
return response
|
||||
last_node = runtime_graph.all_leaves()[-1]
|
||||
response = result_dict[last_node]["text"]
|
||||
choices = []
|
||||
usage = UsageInfo()
|
||||
choices.append(
|
||||
ChatCompletionResponseChoice(
|
||||
index=0,
|
||||
message=ChatMessage(role="assistant", content=response),
|
||||
finish_reason="stop",
|
||||
)
|
||||
)
|
||||
return ChatCompletionResponse(model="translation", choices=choices, usage=usage)
|
||||
|
||||
def start(self):
|
||||
super().__init__(
|
||||
megaservice=self.megaservice,
|
||||
host=self.host,
|
||||
port=self.port,
|
||||
endpoint=str(MegaServiceEndpoint.TRANSLATION),
|
||||
input_datatype=ChatCompletionRequest,
|
||||
output_datatype=ChatCompletionResponse,
|
||||
)
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
translation = TranslationService(host=MEGA_SERVICE_HOST_IP, port=MEGA_SERVICE_PORT)
|
||||
translation = TranslationService(port=MEGA_SERVICE_PORT)
|
||||
translation.add_remote_service()
|
||||
translation.start()
|
||||
|
||||
@@ -3,9 +3,18 @@
|
||||
|
||||
import os
|
||||
|
||||
from comps import MicroService, ServiceOrchestrator, ServiceType, VideoQnAGateway
|
||||
from comps import Gateway, MegaServiceEndpoint, MicroService, ServiceOrchestrator, ServiceType
|
||||
from comps.cores.proto.api_protocol import (
|
||||
ChatCompletionRequest,
|
||||
ChatCompletionResponse,
|
||||
ChatCompletionResponseChoice,
|
||||
ChatMessage,
|
||||
UsageInfo,
|
||||
)
|
||||
from comps.cores.proto.docarray import LLMParams
|
||||
from fastapi import Request
|
||||
from fastapi.responses import StreamingResponse
|
||||
|
||||
MEGA_SERVICE_HOST_IP = os.getenv("MEGA_SERVICE_HOST_IP", "0.0.0.0")
|
||||
MEGA_SERVICE_PORT = int(os.getenv("MEGA_SERVICE_PORT", 8888))
|
||||
EMBEDDING_SERVICE_HOST_IP = os.getenv("EMBEDDING_SERVICE_HOST_IP", "0.0.0.0")
|
||||
EMBEDDING_SERVICE_PORT = int(os.getenv("EMBEDDING_SERVICE_PORT", 6000))
|
||||
@@ -17,7 +26,7 @@ LVM_SERVICE_HOST_IP = os.getenv("LVM_SERVICE_HOST_IP", "0.0.0.0")
|
||||
LVM_SERVICE_PORT = int(os.getenv("LVM_SERVICE_PORT", 9000))
|
||||
|
||||
|
||||
class VideoQnAService:
|
||||
class VideoQnAService(Gateway):
|
||||
def __init__(self, host="0.0.0.0", port=8888):
|
||||
self.host = host
|
||||
self.port = port
|
||||
@@ -60,9 +69,58 @@ class VideoQnAService:
|
||||
self.megaservice.flow_to(embedding, retriever)
|
||||
self.megaservice.flow_to(retriever, rerank)
|
||||
self.megaservice.flow_to(rerank, lvm)
|
||||
self.gateway = VideoQnAGateway(megaservice=self.megaservice, host="0.0.0.0", port=self.port)
|
||||
|
||||
async def handle_request(self, request: Request):
|
||||
data = await request.json()
|
||||
stream_opt = data.get("stream", False)
|
||||
chat_request = ChatCompletionRequest.parse_obj(data)
|
||||
prompt = self._handle_message(chat_request.messages)
|
||||
parameters = LLMParams(
|
||||
max_new_tokens=chat_request.max_tokens if chat_request.max_tokens else 1024,
|
||||
top_k=chat_request.top_k if chat_request.top_k else 10,
|
||||
top_p=chat_request.top_p if chat_request.top_p else 0.95,
|
||||
temperature=chat_request.temperature if chat_request.temperature else 0.01,
|
||||
frequency_penalty=chat_request.frequency_penalty if chat_request.frequency_penalty else 0.0,
|
||||
presence_penalty=chat_request.presence_penalty if chat_request.presence_penalty else 0.0,
|
||||
repetition_penalty=chat_request.repetition_penalty if chat_request.repetition_penalty else 1.03,
|
||||
streaming=stream_opt,
|
||||
)
|
||||
result_dict, runtime_graph = await self.megaservice.schedule(
|
||||
initial_inputs={"text": prompt}, llm_parameters=parameters
|
||||
)
|
||||
for node, response in result_dict.items():
|
||||
# Here it suppose the last microservice in the megaservice is LVM.
|
||||
if (
|
||||
isinstance(response, StreamingResponse)
|
||||
and node == list(self.megaservice.services.keys())[-1]
|
||||
and self.megaservice.services[node].service_type == ServiceType.LVM
|
||||
):
|
||||
return response
|
||||
last_node = runtime_graph.all_leaves()[-1]
|
||||
response = result_dict[last_node]["text"]
|
||||
choices = []
|
||||
usage = UsageInfo()
|
||||
choices.append(
|
||||
ChatCompletionResponseChoice(
|
||||
index=0,
|
||||
message=ChatMessage(role="assistant", content=response),
|
||||
finish_reason="stop",
|
||||
)
|
||||
)
|
||||
return ChatCompletionResponse(model="videoqna", choices=choices, usage=usage)
|
||||
|
||||
def start(self):
|
||||
super().__init__(
|
||||
megaservice=self.megaservice,
|
||||
host=self.host,
|
||||
port=self.port,
|
||||
endpoint=str(MegaServiceEndpoint.VIDEO_RAG_QNA),
|
||||
input_datatype=ChatCompletionRequest,
|
||||
output_datatype=ChatCompletionResponse,
|
||||
)
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
videoqna = VideoQnAService(host=MEGA_SERVICE_HOST_IP, port=MEGA_SERVICE_PORT)
|
||||
videoqna = VideoQnAService(port=MEGA_SERVICE_PORT)
|
||||
videoqna.add_remote_service()
|
||||
videoqna.start()
|
||||
|
||||
@@ -3,15 +3,24 @@
|
||||
|
||||
import os
|
||||
|
||||
from comps import MicroService, ServiceOrchestrator, ServiceType, VisualQnAGateway
|
||||
from comps import Gateway, MegaServiceEndpoint, MicroService, ServiceOrchestrator, ServiceType
|
||||
from comps.cores.proto.api_protocol import (
|
||||
ChatCompletionRequest,
|
||||
ChatCompletionResponse,
|
||||
ChatCompletionResponseChoice,
|
||||
ChatMessage,
|
||||
UsageInfo,
|
||||
)
|
||||
from comps.cores.proto.docarray import LLMParams
|
||||
from fastapi import Request
|
||||
from fastapi.responses import StreamingResponse
|
||||
|
||||
MEGA_SERVICE_HOST_IP = os.getenv("MEGA_SERVICE_HOST_IP", "0.0.0.0")
|
||||
MEGA_SERVICE_PORT = int(os.getenv("MEGA_SERVICE_PORT", 8888))
|
||||
LVM_SERVICE_HOST_IP = os.getenv("LVM_SERVICE_HOST_IP", "0.0.0.0")
|
||||
LVM_SERVICE_PORT = int(os.getenv("LLM_SERVICE_PORT", 9399))
|
||||
|
||||
|
||||
class VisualQnAService:
|
||||
class VisualQnAService(Gateway):
|
||||
def __init__(self, host="0.0.0.0", port=8000):
|
||||
self.host = host
|
||||
self.port = port
|
||||
@@ -27,9 +36,58 @@ class VisualQnAService:
|
||||
service_type=ServiceType.LVM,
|
||||
)
|
||||
self.megaservice.add(llm)
|
||||
self.gateway = VisualQnAGateway(megaservice=self.megaservice, host="0.0.0.0", port=self.port)
|
||||
|
||||
async def handle_request(self, request: Request):
|
||||
data = await request.json()
|
||||
stream_opt = data.get("stream", False)
|
||||
chat_request = ChatCompletionRequest.parse_obj(data)
|
||||
prompt, images = self._handle_message(chat_request.messages)
|
||||
parameters = LLMParams(
|
||||
max_new_tokens=chat_request.max_tokens if chat_request.max_tokens else 1024,
|
||||
top_k=chat_request.top_k if chat_request.top_k else 10,
|
||||
top_p=chat_request.top_p if chat_request.top_p else 0.95,
|
||||
temperature=chat_request.temperature if chat_request.temperature else 0.01,
|
||||
frequency_penalty=chat_request.frequency_penalty if chat_request.frequency_penalty else 0.0,
|
||||
presence_penalty=chat_request.presence_penalty if chat_request.presence_penalty else 0.0,
|
||||
repetition_penalty=chat_request.repetition_penalty if chat_request.repetition_penalty else 1.03,
|
||||
streaming=stream_opt,
|
||||
)
|
||||
result_dict, runtime_graph = await self.megaservice.schedule(
|
||||
initial_inputs={"prompt": prompt, "image": images[0]}, llm_parameters=parameters
|
||||
)
|
||||
for node, response in result_dict.items():
|
||||
# Here it suppose the last microservice in the megaservice is LVM.
|
||||
if (
|
||||
isinstance(response, StreamingResponse)
|
||||
and node == list(self.megaservice.services.keys())[-1]
|
||||
and self.megaservice.services[node].service_type == ServiceType.LVM
|
||||
):
|
||||
return response
|
||||
last_node = runtime_graph.all_leaves()[-1]
|
||||
response = result_dict[last_node]["text"]
|
||||
choices = []
|
||||
usage = UsageInfo()
|
||||
choices.append(
|
||||
ChatCompletionResponseChoice(
|
||||
index=0,
|
||||
message=ChatMessage(role="assistant", content=response),
|
||||
finish_reason="stop",
|
||||
)
|
||||
)
|
||||
return ChatCompletionResponse(model="visualqna", choices=choices, usage=usage)
|
||||
|
||||
def start(self):
|
||||
super().__init__(
|
||||
megaservice=self.megaservice,
|
||||
host=self.host,
|
||||
port=self.port,
|
||||
endpoint=str(MegaServiceEndpoint.VISUAL_QNA),
|
||||
input_datatype=ChatCompletionRequest,
|
||||
output_datatype=ChatCompletionResponse,
|
||||
)
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
visualqna = VisualQnAService(host=MEGA_SERVICE_HOST_IP, port=MEGA_SERVICE_PORT)
|
||||
visualqna = VisualQnAService(port=MEGA_SERVICE_PORT)
|
||||
visualqna.add_remote_service()
|
||||
visualqna.start()
|
||||
|
||||
Reference in New Issue
Block a user