move examples gateway (#992)
Co-authored-by: root <root@idc708073.jf.intel.com> Co-authored-by: pre-commit-ci[bot] <66853113+pre-commit-ci[bot]@users.noreply.github.com> Co-authored-by: Sihan Chen <39623753+Spycsh@users.noreply.github.com>
This commit is contained in:
@@ -1,11 +1,24 @@
|
||||
# Copyright (C) 2024 Intel Corporation
|
||||
# SPDX-License-Identifier: Apache-2.0
|
||||
|
||||
import base64
|
||||
import os
|
||||
from io import BytesIO
|
||||
|
||||
from comps import MicroService, MultimodalQnAGateway, ServiceOrchestrator, ServiceType
|
||||
import requests
|
||||
from comps import Gateway, MegaServiceEndpoint, MicroService, ServiceOrchestrator, ServiceType
|
||||
from comps.cores.proto.api_protocol import (
|
||||
ChatCompletionRequest,
|
||||
ChatCompletionResponse,
|
||||
ChatCompletionResponseChoice,
|
||||
ChatMessage,
|
||||
UsageInfo,
|
||||
)
|
||||
from comps.cores.proto.docarray import LLMParams
|
||||
from fastapi import Request
|
||||
from fastapi.responses import StreamingResponse
|
||||
from PIL import Image
|
||||
|
||||
MEGA_SERVICE_HOST_IP = os.getenv("MEGA_SERVICE_HOST_IP", "0.0.0.0")
|
||||
MEGA_SERVICE_PORT = int(os.getenv("MEGA_SERVICE_PORT", 8888))
|
||||
MM_EMBEDDING_SERVICE_HOST_IP = os.getenv("MM_EMBEDDING_SERVICE_HOST_IP", "0.0.0.0")
|
||||
MM_EMBEDDING_PORT_MICROSERVICE = int(os.getenv("MM_EMBEDDING_PORT_MICROSERVICE", 6000))
|
||||
@@ -15,12 +28,12 @@ LVM_SERVICE_HOST_IP = os.getenv("LVM_SERVICE_HOST_IP", "0.0.0.0")
|
||||
LVM_SERVICE_PORT = int(os.getenv("LVM_SERVICE_PORT", 9399))
|
||||
|
||||
|
||||
class MultimodalQnAService:
|
||||
class MultimodalQnAService(Gateway):
|
||||
def __init__(self, host="0.0.0.0", port=8000):
|
||||
self.host = host
|
||||
self.port = port
|
||||
self.mmrag_megaservice = ServiceOrchestrator()
|
||||
self.lvm_megaservice = ServiceOrchestrator()
|
||||
self.megaservice = ServiceOrchestrator()
|
||||
|
||||
def add_remote_service(self):
|
||||
mm_embedding = MicroService(
|
||||
@@ -50,21 +63,186 @@ class MultimodalQnAService:
|
||||
)
|
||||
|
||||
# for mmrag megaservice
|
||||
self.mmrag_megaservice.add(mm_embedding).add(mm_retriever).add(lvm)
|
||||
self.mmrag_megaservice.flow_to(mm_embedding, mm_retriever)
|
||||
self.mmrag_megaservice.flow_to(mm_retriever, lvm)
|
||||
self.megaservice.add(mm_embedding).add(mm_retriever).add(lvm)
|
||||
self.megaservice.flow_to(mm_embedding, mm_retriever)
|
||||
self.megaservice.flow_to(mm_retriever, lvm)
|
||||
|
||||
# for lvm megaservice
|
||||
self.lvm_megaservice.add(lvm)
|
||||
|
||||
self.gateway = MultimodalQnAGateway(
|
||||
multimodal_rag_megaservice=self.mmrag_megaservice,
|
||||
lvm_megaservice=self.lvm_megaservice,
|
||||
host="0.0.0.0",
|
||||
# this overrides _handle_message method of Gateway
|
||||
def _handle_message(self, messages):
|
||||
images = []
|
||||
messages_dicts = []
|
||||
if isinstance(messages, str):
|
||||
prompt = messages
|
||||
else:
|
||||
messages_dict = {}
|
||||
system_prompt = ""
|
||||
prompt = ""
|
||||
for message in messages:
|
||||
msg_role = message["role"]
|
||||
messages_dict = {}
|
||||
if msg_role == "system":
|
||||
system_prompt = message["content"]
|
||||
elif msg_role == "user":
|
||||
if type(message["content"]) == list:
|
||||
text = ""
|
||||
text_list = [item["text"] for item in message["content"] if item["type"] == "text"]
|
||||
text += "\n".join(text_list)
|
||||
image_list = [
|
||||
item["image_url"]["url"] for item in message["content"] if item["type"] == "image_url"
|
||||
]
|
||||
if image_list:
|
||||
messages_dict[msg_role] = (text, image_list)
|
||||
else:
|
||||
messages_dict[msg_role] = text
|
||||
else:
|
||||
messages_dict[msg_role] = message["content"]
|
||||
messages_dicts.append(messages_dict)
|
||||
elif msg_role == "assistant":
|
||||
messages_dict[msg_role] = message["content"]
|
||||
messages_dicts.append(messages_dict)
|
||||
else:
|
||||
raise ValueError(f"Unknown role: {msg_role}")
|
||||
|
||||
if system_prompt:
|
||||
prompt = system_prompt + "\n"
|
||||
for messages_dict in messages_dicts:
|
||||
for i, (role, message) in enumerate(messages_dict.items()):
|
||||
if isinstance(message, tuple):
|
||||
text, image_list = message
|
||||
if i == 0:
|
||||
# do not add role for the very first message.
|
||||
# this will be added by llava_server
|
||||
if text:
|
||||
prompt += text + "\n"
|
||||
else:
|
||||
if text:
|
||||
prompt += role.upper() + ": " + text + "\n"
|
||||
else:
|
||||
prompt += role.upper() + ":"
|
||||
for img in image_list:
|
||||
# URL
|
||||
if img.startswith("http://") or img.startswith("https://"):
|
||||
response = requests.get(img)
|
||||
image = Image.open(BytesIO(response.content)).convert("RGBA")
|
||||
image_bytes = BytesIO()
|
||||
image.save(image_bytes, format="PNG")
|
||||
img_b64_str = base64.b64encode(image_bytes.getvalue()).decode()
|
||||
# Local Path
|
||||
elif os.path.exists(img):
|
||||
image = Image.open(img).convert("RGBA")
|
||||
image_bytes = BytesIO()
|
||||
image.save(image_bytes, format="PNG")
|
||||
img_b64_str = base64.b64encode(image_bytes.getvalue()).decode()
|
||||
# Bytes
|
||||
else:
|
||||
img_b64_str = img
|
||||
|
||||
images.append(img_b64_str)
|
||||
else:
|
||||
if i == 0:
|
||||
# do not add role for the very first message.
|
||||
# this will be added by llava_server
|
||||
if message:
|
||||
prompt += role.upper() + ": " + message + "\n"
|
||||
else:
|
||||
if message:
|
||||
prompt += role.upper() + ": " + message + "\n"
|
||||
else:
|
||||
prompt += role.upper() + ":"
|
||||
if images:
|
||||
return prompt, images
|
||||
else:
|
||||
return prompt
|
||||
|
||||
async def handle_request(self, request: Request):
|
||||
data = await request.json()
|
||||
stream_opt = bool(data.get("stream", False))
|
||||
if stream_opt:
|
||||
print("[ MultimodalQnAService ] stream=True not used, this has not support streaming yet!")
|
||||
stream_opt = False
|
||||
chat_request = ChatCompletionRequest.model_validate(data)
|
||||
# Multimodal RAG QnA With Videos has not yet accepts image as input during QnA.
|
||||
prompt_and_image = self._handle_message(chat_request.messages)
|
||||
if isinstance(prompt_and_image, tuple):
|
||||
# print(f"This request include image, thus it is a follow-up query. Using lvm megaservice")
|
||||
prompt, images = prompt_and_image
|
||||
cur_megaservice = self.lvm_megaservice
|
||||
initial_inputs = {"prompt": prompt, "image": images[0]}
|
||||
else:
|
||||
# print(f"This is the first query, requiring multimodal retrieval. Using multimodal rag megaservice")
|
||||
prompt = prompt_and_image
|
||||
cur_megaservice = self.megaservice
|
||||
initial_inputs = {"text": prompt}
|
||||
|
||||
parameters = LLMParams(
|
||||
max_new_tokens=chat_request.max_tokens if chat_request.max_tokens else 1024,
|
||||
top_k=chat_request.top_k if chat_request.top_k else 10,
|
||||
top_p=chat_request.top_p if chat_request.top_p else 0.95,
|
||||
temperature=chat_request.temperature if chat_request.temperature else 0.01,
|
||||
frequency_penalty=chat_request.frequency_penalty if chat_request.frequency_penalty else 0.0,
|
||||
presence_penalty=chat_request.presence_penalty if chat_request.presence_penalty else 0.0,
|
||||
repetition_penalty=chat_request.repetition_penalty if chat_request.repetition_penalty else 1.03,
|
||||
streaming=stream_opt,
|
||||
chat_template=chat_request.chat_template if chat_request.chat_template else None,
|
||||
)
|
||||
result_dict, runtime_graph = await cur_megaservice.schedule(
|
||||
initial_inputs=initial_inputs, llm_parameters=parameters
|
||||
)
|
||||
for node, response in result_dict.items():
|
||||
# the last microservice in this megaservice is LVM.
|
||||
# checking if LVM returns StreamingResponse
|
||||
# Currently, LVM with LLAVA has not yet supported streaming.
|
||||
# @TODO: Will need to test this once LVM with LLAVA supports streaming
|
||||
if (
|
||||
isinstance(response, StreamingResponse)
|
||||
and node == runtime_graph.all_leaves()[-1]
|
||||
and self.megaservice.services[node].service_type == ServiceType.LVM
|
||||
):
|
||||
return response
|
||||
last_node = runtime_graph.all_leaves()[-1]
|
||||
|
||||
if "text" in result_dict[last_node].keys():
|
||||
response = result_dict[last_node]["text"]
|
||||
else:
|
||||
# text in not response message
|
||||
# something wrong, for example due to empty retrieval results
|
||||
if "detail" in result_dict[last_node].keys():
|
||||
response = result_dict[last_node]["detail"]
|
||||
else:
|
||||
response = "The server fail to generate answer to your query!"
|
||||
if "metadata" in result_dict[last_node].keys():
|
||||
# from retrieval results
|
||||
metadata = result_dict[last_node]["metadata"]
|
||||
else:
|
||||
# follow-up question, no retrieval
|
||||
metadata = None
|
||||
choices = []
|
||||
usage = UsageInfo()
|
||||
choices.append(
|
||||
ChatCompletionResponseChoice(
|
||||
index=0,
|
||||
message=ChatMessage(role="assistant", content=response),
|
||||
finish_reason="stop",
|
||||
metadata=metadata,
|
||||
)
|
||||
)
|
||||
return ChatCompletionResponse(model="multimodalqna", choices=choices, usage=usage)
|
||||
|
||||
def start(self):
|
||||
super().__init__(
|
||||
megaservice=self.megaservice,
|
||||
host=self.host,
|
||||
port=self.port,
|
||||
endpoint=str(MegaServiceEndpoint.MULTIMODAL_QNA),
|
||||
input_datatype=ChatCompletionRequest,
|
||||
output_datatype=ChatCompletionResponse,
|
||||
)
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
mmragwithvideos = MultimodalQnAService(host=MEGA_SERVICE_HOST_IP, port=MEGA_SERVICE_PORT)
|
||||
mmragwithvideos = MultimodalQnAService(port=MEGA_SERVICE_PORT)
|
||||
mmragwithvideos.add_remote_service()
|
||||
mmragwithvideos.start()
|
||||
|
||||
Reference in New Issue
Block a user