move examples gateway (#992)
Co-authored-by: root <root@idc708073.jf.intel.com> Co-authored-by: pre-commit-ci[bot] <66853113+pre-commit-ci[bot]@users.noreply.github.com> Co-authored-by: Sihan Chen <39623753+Spycsh@users.noreply.github.com>
This commit is contained in:
@@ -6,7 +6,18 @@ import json
|
||||
import os
|
||||
import re
|
||||
|
||||
from comps import GraphragGateway, MicroService, ServiceOrchestrator, ServiceType
|
||||
from comps import Gateway, MegaServiceEndpoint, MicroService, ServiceOrchestrator, ServiceType
|
||||
from comps.cores.proto.api_protocol import (
|
||||
ChatCompletionRequest,
|
||||
ChatCompletionResponse,
|
||||
ChatCompletionResponseChoice,
|
||||
ChatMessage,
|
||||
EmbeddingRequest,
|
||||
UsageInfo,
|
||||
)
|
||||
from comps.cores.proto.docarray import LLMParams, RetrieverParms, TextDoc
|
||||
from fastapi import Request
|
||||
from fastapi.responses import StreamingResponse
|
||||
from langchain_core.prompts import PromptTemplate
|
||||
|
||||
|
||||
@@ -35,7 +46,6 @@ If you don't know the answer to a question, please don't share false information
|
||||
return template.format(context=context_str, question=question)
|
||||
|
||||
|
||||
MEGA_SERVICE_HOST_IP = os.getenv("MEGA_SERVICE_HOST_IP", "0.0.0.0")
|
||||
MEGA_SERVICE_PORT = int(os.getenv("MEGA_SERVICE_PORT", 8888))
|
||||
RETRIEVER_SERVICE_HOST_IP = os.getenv("RETRIEVER_SERVICE_HOST_IP", "0.0.0.0")
|
||||
RETRIEVER_SERVICE_PORT = int(os.getenv("RETRIEVER_SERVICE_PORT", 7000))
|
||||
@@ -117,7 +127,7 @@ def align_generator(self, gen, **kwargs):
|
||||
yield "data: [DONE]\n\n"
|
||||
|
||||
|
||||
class GraphRAGService:
|
||||
class GraphRAGService(Gateway):
|
||||
def __init__(self, host="0.0.0.0", port=8000):
|
||||
self.host = host
|
||||
self.port = port
|
||||
@@ -146,9 +156,84 @@ class GraphRAGService:
|
||||
)
|
||||
self.megaservice.add(retriever).add(llm)
|
||||
self.megaservice.flow_to(retriever, llm)
|
||||
self.gateway = GraphragGateway(megaservice=self.megaservice, host="0.0.0.0", port=self.port)
|
||||
|
||||
async def handle_request(self, request: Request):
|
||||
data = await request.json()
|
||||
stream_opt = data.get("stream", True)
|
||||
chat_request = ChatCompletionRequest.parse_obj(data)
|
||||
|
||||
def parser_input(data, TypeClass, key):
|
||||
chat_request = None
|
||||
try:
|
||||
chat_request = TypeClass.parse_obj(data)
|
||||
query = getattr(chat_request, key)
|
||||
except:
|
||||
query = None
|
||||
return query, chat_request
|
||||
|
||||
query = None
|
||||
for key, TypeClass in zip(["text", "input", "messages"], [TextDoc, EmbeddingRequest, ChatCompletionRequest]):
|
||||
query, chat_request = parser_input(data, TypeClass, key)
|
||||
if query is not None:
|
||||
break
|
||||
if query is None:
|
||||
raise ValueError(f"Unknown request type: {data}")
|
||||
if chat_request is None:
|
||||
raise ValueError(f"Unknown request type: {data}")
|
||||
prompt = self._handle_message(chat_request.messages)
|
||||
parameters = LLMParams(
|
||||
max_tokens=chat_request.max_tokens if chat_request.max_tokens else 1024,
|
||||
top_k=chat_request.top_k if chat_request.top_k else 10,
|
||||
top_p=chat_request.top_p if chat_request.top_p else 0.95,
|
||||
temperature=chat_request.temperature if chat_request.temperature else 0.01,
|
||||
frequency_penalty=chat_request.frequency_penalty if chat_request.frequency_penalty else 0.0,
|
||||
presence_penalty=chat_request.presence_penalty if chat_request.presence_penalty else 0.0,
|
||||
repetition_penalty=chat_request.repetition_penalty if chat_request.repetition_penalty else 1.03,
|
||||
streaming=stream_opt,
|
||||
chat_template=chat_request.chat_template if chat_request.chat_template else None,
|
||||
)
|
||||
retriever_parameters = RetrieverParms(
|
||||
search_type=chat_request.search_type if chat_request.search_type else "similarity",
|
||||
k=chat_request.k if chat_request.k else 4,
|
||||
distance_threshold=chat_request.distance_threshold if chat_request.distance_threshold else None,
|
||||
fetch_k=chat_request.fetch_k if chat_request.fetch_k else 20,
|
||||
lambda_mult=chat_request.lambda_mult if chat_request.lambda_mult else 0.5,
|
||||
score_threshold=chat_request.score_threshold if chat_request.score_threshold else 0.2,
|
||||
)
|
||||
initial_inputs = chat_request
|
||||
result_dict, runtime_graph = await self.megaservice.schedule(
|
||||
initial_inputs=initial_inputs,
|
||||
llm_parameters=parameters,
|
||||
retriever_parameters=retriever_parameters,
|
||||
)
|
||||
for node, response in result_dict.items():
|
||||
if isinstance(response, StreamingResponse):
|
||||
return response
|
||||
last_node = runtime_graph.all_leaves()[-1]
|
||||
response_content = result_dict[last_node]["choices"][0]["message"]["content"]
|
||||
choices = []
|
||||
usage = UsageInfo()
|
||||
choices.append(
|
||||
ChatCompletionResponseChoice(
|
||||
index=0,
|
||||
message=ChatMessage(role="assistant", content=response_content),
|
||||
finish_reason="stop",
|
||||
)
|
||||
)
|
||||
return ChatCompletionResponse(model="chatqna", choices=choices, usage=usage)
|
||||
|
||||
def start(self):
|
||||
super().__init__(
|
||||
megaservice=self.megaservice,
|
||||
host=self.host,
|
||||
port=self.port,
|
||||
endpoint=str(MegaServiceEndpoint.GRAPH_RAG),
|
||||
input_datatype=ChatCompletionRequest,
|
||||
output_datatype=ChatCompletionResponse,
|
||||
)
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
graphrag = GraphRAGService(host=MEGA_SERVICE_HOST_IP, port=MEGA_SERVICE_PORT)
|
||||
graphrag = GraphRAGService(port=MEGA_SERVICE_PORT)
|
||||
graphrag.add_remote_service()
|
||||
graphrag.start()
|
||||
|
||||
Reference in New Issue
Block a user