move examples gateway (#992)
Co-authored-by: root <root@idc708073.jf.intel.com> Co-authored-by: pre-commit-ci[bot] <66853113+pre-commit-ci[bot]@users.noreply.github.com> Co-authored-by: Sihan Chen <39623753+Spycsh@users.noreply.github.com>
This commit is contained in:
@@ -3,10 +3,14 @@
|
||||
|
||||
import asyncio
|
||||
import os
|
||||
from typing import Union
|
||||
|
||||
from comps import MicroService, RetrievalToolGateway, ServiceOrchestrator, ServiceType
|
||||
from comps import Gateway, MegaServiceEndpoint, MicroService, ServiceOrchestrator, ServiceType
|
||||
from comps.cores.proto.api_protocol import ChatCompletionRequest, EmbeddingRequest
|
||||
from comps.cores.proto.docarray import LLMParamsDoc, RerankedDoc, RerankerParms, RetrieverParms, TextDoc
|
||||
from fastapi import Request
|
||||
from fastapi.responses import StreamingResponse
|
||||
|
||||
MEGA_SERVICE_HOST_IP = os.getenv("MEGA_SERVICE_HOST_IP", "0.0.0.0")
|
||||
MEGA_SERVICE_PORT = os.getenv("MEGA_SERVICE_PORT", 8889)
|
||||
EMBEDDING_SERVICE_HOST_IP = os.getenv("EMBEDDING_SERVICE_HOST_IP", "0.0.0.0")
|
||||
EMBEDDING_SERVICE_PORT = os.getenv("EMBEDDING_SERVICE_PORT", 6000)
|
||||
@@ -16,7 +20,7 @@ RERANK_SERVICE_HOST_IP = os.getenv("RERANK_SERVICE_HOST_IP", "0.0.0.0")
|
||||
RERANK_SERVICE_PORT = os.getenv("RERANK_SERVICE_PORT", 8000)
|
||||
|
||||
|
||||
class RetrievalToolService:
|
||||
class RetrievalToolService(Gateway):
|
||||
def __init__(self, host="0.0.0.0", port=8000):
|
||||
self.host = host
|
||||
self.port = port
|
||||
@@ -51,9 +55,77 @@ class RetrievalToolService:
|
||||
self.megaservice.add(embedding).add(retriever).add(rerank)
|
||||
self.megaservice.flow_to(embedding, retriever)
|
||||
self.megaservice.flow_to(retriever, rerank)
|
||||
self.gateway = RetrievalToolGateway(megaservice=self.megaservice, host="0.0.0.0", port=self.port)
|
||||
|
||||
async def handle_request(self, request: Request):
|
||||
def parser_input(data, TypeClass, key):
|
||||
chat_request = None
|
||||
try:
|
||||
chat_request = TypeClass.parse_obj(data)
|
||||
query = getattr(chat_request, key)
|
||||
except:
|
||||
query = None
|
||||
return query, chat_request
|
||||
|
||||
data = await request.json()
|
||||
query = None
|
||||
for key, TypeClass in zip(["text", "input", "messages"], [TextDoc, EmbeddingRequest, ChatCompletionRequest]):
|
||||
query, chat_request = parser_input(data, TypeClass, key)
|
||||
if query is not None:
|
||||
break
|
||||
if query is None:
|
||||
raise ValueError(f"Unknown request type: {data}")
|
||||
if chat_request is None:
|
||||
raise ValueError(f"Unknown request type: {data}")
|
||||
|
||||
if isinstance(chat_request, ChatCompletionRequest):
|
||||
retriever_parameters = RetrieverParms(
|
||||
search_type=chat_request.search_type if chat_request.search_type else "similarity",
|
||||
k=chat_request.k if chat_request.k else 4,
|
||||
distance_threshold=chat_request.distance_threshold if chat_request.distance_threshold else None,
|
||||
fetch_k=chat_request.fetch_k if chat_request.fetch_k else 20,
|
||||
lambda_mult=chat_request.lambda_mult if chat_request.lambda_mult else 0.5,
|
||||
score_threshold=chat_request.score_threshold if chat_request.score_threshold else 0.2,
|
||||
)
|
||||
reranker_parameters = RerankerParms(
|
||||
top_n=chat_request.top_n if chat_request.top_n else 1,
|
||||
)
|
||||
|
||||
initial_inputs = {
|
||||
"messages": query,
|
||||
"input": query, # has to be input due to embedding expects either input or text
|
||||
"search_type": chat_request.search_type if chat_request.search_type else "similarity",
|
||||
"k": chat_request.k if chat_request.k else 4,
|
||||
"distance_threshold": chat_request.distance_threshold if chat_request.distance_threshold else None,
|
||||
"fetch_k": chat_request.fetch_k if chat_request.fetch_k else 20,
|
||||
"lambda_mult": chat_request.lambda_mult if chat_request.lambda_mult else 0.5,
|
||||
"score_threshold": chat_request.score_threshold if chat_request.score_threshold else 0.2,
|
||||
"top_n": chat_request.top_n if chat_request.top_n else 1,
|
||||
}
|
||||
|
||||
result_dict, runtime_graph = await self.megaservice.schedule(
|
||||
initial_inputs=initial_inputs,
|
||||
retriever_parameters=retriever_parameters,
|
||||
reranker_parameters=reranker_parameters,
|
||||
)
|
||||
else:
|
||||
result_dict, runtime_graph = await self.megaservice.schedule(initial_inputs={"text": query})
|
||||
|
||||
last_node = runtime_graph.all_leaves()[-1]
|
||||
response = result_dict[last_node]
|
||||
return response
|
||||
|
||||
def start(self):
|
||||
super().__init__(
|
||||
megaservice=self.megaservice,
|
||||
host=self.host,
|
||||
port=self.port,
|
||||
endpoint=str(MegaServiceEndpoint.RETRIEVALTOOL),
|
||||
input_datatype=Union[TextDoc, EmbeddingRequest, ChatCompletionRequest],
|
||||
output_datatype=Union[RerankedDoc, LLMParamsDoc],
|
||||
)
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
chatqna = RetrievalToolService(host=MEGA_SERVICE_HOST_IP, port=MEGA_SERVICE_PORT)
|
||||
chatqna = RetrievalToolService(port=MEGA_SERVICE_PORT)
|
||||
chatqna.add_remote_service()
|
||||
chatqna.start()
|
||||
|
||||
Reference in New Issue
Block a user