Add MultimodalQnA as MMRAG usecase in Example (#751)

Signed-off-by: Tiep Le <tiep.le@intel.com>
Signed-off-by: siddhivelankar23 <siddhi.velankar@intel.com>
Signed-off-by: sjagtap1803 <siddhant.jagtap@intel.com>
This commit is contained in:
Tiep Le
2024-09-14 01:55:29 -07:00
committed by GitHub
parent 06696c8e58
commit b6cce35a93
21 changed files with 2558 additions and 0 deletions

View File

@@ -0,0 +1,262 @@
#!/bin/bash
# Copyright (C) 2024 Intel Corporation
# SPDX-License-Identifier: Apache-2.0
set -e
IMAGE_REPO=${IMAGE_REPO:-"opea"}
IMAGE_TAG=${IMAGE_TAG:-"latest"}
echo "REGISTRY=IMAGE_REPO=${IMAGE_REPO}"
echo "TAG=IMAGE_TAG=${IMAGE_TAG}"
export REGISTRY=${IMAGE_REPO}
export TAG=${IMAGE_TAG}
WORKPATH=$(dirname "$PWD")
LOG_PATH="$WORKPATH/tests"
ip_address=$(hostname -I | awk '{print $1}')
export video_fn="WeAreGoingOnBullrun.mp4"
function build_docker_images() {
cd $WORKPATH/docker_image_build
git clone https://github.com/opea-project/GenAIComps.git && cd GenAIComps && git checkout "${opea_branch:-"main"}" && cd ../
echo "Build all the images with --no-cache, check docker_image_build.log for details..."
service_list="multimodalqna multimodalqna-ui embedding-multimodal-bridgetower embedding-multimodal retriever-multimodal-redis lvm-llava lvm-llava-svc dataprep-multimodal-redis"
docker compose -f build.yaml build ${service_list} --no-cache > ${LOG_PATH}/docker_image_build.log
docker images && sleep 1m
}
function setup_env() {
export host_ip=${ip_address}
export EMBEDDER_PORT=6006
export MMEI_EMBEDDING_ENDPOINT="http://${host_ip}:$EMBEDDER_PORT/v1/encode"
export MM_EMBEDDING_PORT_MICROSERVICE=6000
export REDIS_URL="redis://${host_ip}:6379"
export REDIS_HOST=${host_ip}
export INDEX_NAME="mm-rag-redis"
export LLAVA_SERVER_PORT=8399
export LVM_ENDPOINT="http://${host_ip}:8399"
export EMBEDDING_MODEL_ID="BridgeTower/bridgetower-large-itm-mlm-itc"
export WHISPER_MODEL="base"
export MM_EMBEDDING_SERVICE_HOST_IP=${host_ip}
export MM_RETRIEVER_SERVICE_HOST_IP=${host_ip}
export LVM_SERVICE_HOST_IP=${host_ip}
export MEGA_SERVICE_HOST_IP=${host_ip}
export BACKEND_SERVICE_ENDPOINT="http://${host_ip}:8888/v1/multimodalqna"
export DATAPREP_GEN_TRANSCRIPT_SERVICE_ENDPOINT="http://${host_ip}:6007/v1/generate_transcripts"
export DATAPREP_GEN_CAPTION_SERVICE_ENDPOINT="http://${host_ip}:6007/v1/generate_captions"
export DATAPREP_GET_VIDEO_ENDPOINT="http://${host_ip}:6007/v1/dataprep/get_videos"
export DATAPREP_DELETE_VIDEO_ENDPOINT="http://${host_ip}:6007/v1/dataprep/delete_videos"
}
function start_services() {
cd $WORKPATH/docker_compose/intel/cpu/xeon
# Start Docker Containers
docker compose -f compose.yaml up -d > ${LOG_PATH}/start_services_with_compose.log
sleep 2m
}
function prepare_data() {
cd $LOG_PATH
echo "Downloading video"
wget http://commondatastorage.googleapis.com/gtv-videos-bucket/sample/WeAreGoingOnBullrun.mp4 -O ${video_fn}
sleep 1m
}
function validate_service() {
local URL="$1"
local EXPECTED_RESULT="$2"
local SERVICE_NAME="$3"
local DOCKER_NAME="$4"
local INPUT_DATA="$5"
if [[ $SERVICE_NAME == *"dataprep-multimodal-redis"* ]]; then
cd $LOG_PATH
HTTP_RESPONSE=$(curl --silent --write-out "HTTPSTATUS:%{http_code}" -X POST -F "files=@./${video_fn}" -H 'Content-Type: multipart/form-data' "$URL")
elif [[ $SERVICE_NAME == *"dataprep_get"* ]]; then
HTTP_RESPONSE=$(curl --silent --write-out "HTTPSTATUS:%{http_code}" -X POST -H 'Content-Type: application/json' "$URL")
elif [[ $SERVICE_NAME == *"dataprep_del"* ]]; then
HTTP_RESPONSE=$(curl --silent --write-out "HTTPSTATUS:%{http_code}" -X POST -H 'Content-Type: application/json' "$URL")
else
HTTP_RESPONSE=$(curl --silent --write-out "HTTPSTATUS:%{http_code}" -X POST -d "$INPUT_DATA" -H 'Content-Type: application/json' "$URL")
fi
HTTP_STATUS=$(echo $HTTP_RESPONSE | tr -d '\n' | sed -e 's/.*HTTPSTATUS://')
RESPONSE_BODY=$(echo $HTTP_RESPONSE | sed -e 's/HTTPSTATUS\:.*//g')
docker logs ${DOCKER_NAME} >> ${LOG_PATH}/${SERVICE_NAME}.log
# check response status
if [ "$HTTP_STATUS" -ne "200" ]; then
echo "[ $SERVICE_NAME ] HTTP status is not 200. Received status was $HTTP_STATUS"
exit 1
else
echo "[ $SERVICE_NAME ] HTTP status is 200. Checking content..."
fi
# check response body
if [[ "$RESPONSE_BODY" != *"$EXPECTED_RESULT"* ]]; then
echo "[ $SERVICE_NAME ] Content does not match the expected result: $RESPONSE_BODY"
exit 1
else
echo "[ $SERVICE_NAME ] Content is as expected."
fi
sleep 1s
}
function validate_microservices() {
# Check if the microservices are running correctly.
# Bridgetower Embedding Server
echo "Validating embedding-multimodal-bridgetower"
validate_service \
"http://${host_ip}:${EMBEDDER_PORT}/v1/encode" \
'"embedding":[' \
"embedding-multimodal-bridgetower" \
"embedding-multimodal-bridgetower" \
'{"text":"This is example"}'
validate_service \
"http://${host_ip}:${EMBEDDER_PORT}/v1/encode" \
'"embedding":[' \
"embedding-multimodal-bridgetower" \
"embedding-multimodal-bridgetower" \
'{"text":"This is example", "img_b64_str": "iVBORw0KGgoAAAANSUhEUgAAAAoAAAAKCAYAAACNMs+9AAAAFUlEQVR42mP8/5+hnoEIwDiqkL4KAcT9GO0U4BxoAAAAAElFTkSuQmCC"}'
# embedding microservice
echo "Validating embedding-multimodal"
validate_service \
"http://${host_ip}:$MM_EMBEDDING_PORT_MICROSERVICE/v1/embeddings" \
'"embedding":[' \
"embedding-multimodal" \
"embedding-multimodal" \
'{"text" : "This is some sample text."}'
validate_service \
"http://${host_ip}:$MM_EMBEDDING_PORT_MICROSERVICE/v1/embeddings" \
'"embedding":[' \
"embedding-multimodal" \
"embedding-multimodal" \
'{"text": {"text" : "This is some sample text."}, "image" : {"url": "https://github.com/docarray/docarray/blob/main/tests/toydata/image-data/apple.png?raw=true"}}'
sleep 1m # retrieval can't curl as expected, try to wait for more time
# test data prep
echo "Data Prep with Generating Transcript"
validate_service \
"${DATAPREP_GEN_TRANSCRIPT_SERVICE_ENDPOINT}" \
"Data preparation succeeded" \
"dataprep-multimodal-redis" \
"dataprep-multimodal-redis"
# echo "Data Prep with Generating Caption"
# validate_service \
# "${DATAPREP_GEN_CAPTION_SERVICE_ENDPOINT}" \
# "Data preparation succeeded" \
# "dataprep-multimodal-redis" \
# "dataprep-multimodal-redis"
echo "Validating get file"
validate_service \
"${DATAPREP_GET_VIDEO_ENDPOINT}" \
'.mp4' \
"dataprep_get" \
"dataprep-multimodal-redis"
sleep 1m
# multimodal retrieval microservice
echo "Validating retriever-multimodal-redis"
your_embedding=$(python3 -c "import random; embedding = [random.uniform(-1, 1) for _ in range(512)]; print(embedding)")
validate_service \
"http://${host_ip}:7000/v1/multimodal_retrieval" \
"retrieved_docs" \
"retriever-multimodal-redis" \
"retriever-multimodal-redis" \
"{\"text\":\"test\",\"embedding\":${your_embedding}}"
sleep 10s
# llava server
echo "Evaluating lvm-llava"
validate_service \
"http://${host_ip}:${LLAVA_SERVER_PORT}/generate" \
'"text":' \
"lvm-llava" \
"lvm-llava" \
'{"prompt":"Describe the image please.", "img_b64_str": "iVBORw0KGgoAAAANSUhEUgAAAAoAAAAKCAYAAACNMs+9AAAAFUlEQVR42mP8/5+hnoEIwDiqkL4KAcT9GO0U4BxoAAAAAElFTkSuQmCC"}'
# lvm
echo "Evaluating lvm-llava-svc"
validate_service \
"http://${host_ip}:9399/v1/lvm" \
'"text":"' \
"lvm-llava-svc" \
"lvm-llava-svc" \
'{"retrieved_docs": [], "initial_query": "What is this?", "top_n": 1, "metadata": [{"b64_img_str": "iVBORw0KGgoAAAANSUhEUgAAAAoAAAAKCAYAAACNMs+9AAAAFUlEQVR42mP8/5+hnoEIwDiqkL4KAcT9GO0U4BxoAAAAAElFTkSuQmCC", "transcript_for_inference": "yellow image", "video_id": "8c7461df-b373-4a00-8696-9a2234359fe0", "time_of_frame_ms":"37000000", "source_video":"WeAreGoingOnBullrun_8c7461df-b373-4a00-8696-9a2234359fe0.mp4"}], "chat_template":"The caption of the image is: '\''{context}'\''. {question}"}'
sleep 3m
}
function validate_megaservice() {
# Curl the Mega Service with retrieval
echo "Validate megaservice with first query"
validate_service \
"http://${host_ip}:8888/v1/multimodalqna" \
'"time_of_frame_ms":' \
"multimodalqna" \
"multimodalqna-backend-server" \
'{"messages": "What is the revenue of Nike in 2023?"}'
echo "Validate megaservice with follow-up query"
validate_service \
"http://${host_ip}:8888/v1/multimodalqna" \
'"content":"' \
"multimodalqna" \
"multimodalqna-backend-server" \
'{"messages": [{"role": "user", "content": [{"type": "text", "text": "hello, "}, {"type": "image_url", "image_url": {"url": "https://www.ilankelman.org/stopsigns/australia.jpg"}}]}, {"role": "assistant", "content": "opea project! "}, {"role": "user", "content": "chao, "}], "max_tokens": 10}'
}
function validate_delete {
echo "Validate data prep delete videos"
validate_service \
"${DATAPREP_DELETE_VIDEO_ENDPOINT}" \
'{"status":true}' \
"dataprep_del" \
"dataprep-multimodal-redis"
}
function stop_docker() {
cd $WORKPATH/docker_compose/intel/cpu/xeon
docker compose -f compose.yaml stop && docker compose -f compose.yaml rm -f
}
function main() {
setup_env
stop_docker
if [[ "$IMAGE_REPO" == "opea" ]]; then build_docker_images; fi
start_time=$(date +%s)
start_services
end_time=$(date +%s)
duration=$((end_time-start_time))
echo "Mega service start duration is $duration s" && sleep 1s
prepare_data
validate_microservices
echo "==== microservices validated ===="
validate_megaservice
echo "==== megaservice validated ===="
validate_delete
echo "==== delete validated ===="
stop_docker
echo y | docker system prune
}
main