Add compose example for DocSum amd rocm deployment (#1125)
Signed-off-by: Artem Astafev <a.astafev@datamonsters.com> Co-authored-by: pre-commit-ci[bot] <66853113+pre-commit-ci[bot]@users.noreply.github.com>
This commit is contained in:
174
DocSum/docker_compose/amd/gpu/rocm/README.md
Normal file
174
DocSum/docker_compose/amd/gpu/rocm/README.md
Normal file
@@ -0,0 +1,174 @@
|
||||
# Build and deploy DocSum Application on AMD GPU (ROCm)
|
||||
|
||||
## Build images
|
||||
|
||||
## 🚀 Build Docker Images
|
||||
|
||||
First of all, you need to build Docker Images locally and install the python package of it.
|
||||
|
||||
### 1. Build LLM Image
|
||||
|
||||
```bash
|
||||
git clone https://github.com/opea-project/GenAIComps.git
|
||||
cd GenAIComps
|
||||
docker build -t opea/llm-docsum-tgi:latest --build-arg https_proxy=$https_proxy --build-arg http_proxy=$http_proxy -f comps/llms/summarization/tgi/langchain/Dockerfile .
|
||||
```
|
||||
|
||||
Then run the command `docker images`, you will have the following four Docker Images:
|
||||
|
||||
### 2. Build MegaService Docker Image
|
||||
|
||||
To construct the Mega Service, we utilize the [GenAIComps](https://github.com/opea-project/GenAIComps.git) microservice pipeline within the `docsum.py` Python script. Build the MegaService Docker image via below command:
|
||||
|
||||
```bash
|
||||
git clone https://github.com/opea-project/GenAIExamples
|
||||
cd GenAIExamples/DocSum/
|
||||
docker build -t opea/docsum:latest --build-arg https_proxy=$https_proxy --build-arg http_proxy=$http_proxy -f Dockerfile .
|
||||
```
|
||||
|
||||
### 3. Build UI Docker Image
|
||||
|
||||
Build the frontend Docker image via below command:
|
||||
|
||||
```bash
|
||||
cd GenAIExamples/DocSum/ui
|
||||
docker build -t opea/docsum-ui:latest --build-arg https_proxy=$https_proxy --build-arg http_proxy=$http_proxy -f docker/Dockerfile .
|
||||
```
|
||||
|
||||
Then run the command `docker images`, you will have the following Docker Images:
|
||||
|
||||
1. `opea/llm-docsum-tgi:latest`
|
||||
2. `opea/docsum:latest`
|
||||
3. `opea/docsum-ui:latest`
|
||||
|
||||
### 4. Build React UI Docker Image
|
||||
|
||||
Build the frontend Docker image via below command:
|
||||
|
||||
```bash
|
||||
cd GenAIExamples/DocSum/ui
|
||||
export BACKEND_SERVICE_ENDPOINT="http://${host_ip}:8888/v1/docsum"
|
||||
docker build -t opea/docsum-react-ui:latest --build-arg BACKEND_SERVICE_ENDPOINT=$BACKEND_SERVICE_ENDPOINT -f ./docker/Dockerfile.react .
|
||||
|
||||
docker build -t opea/docsum-react-ui:latest --build-arg BACKEND_SERVICE_ENDPOINT=$BACKEND_SERVICE_ENDPOINT --build-arg https_proxy=$https_proxy --build-arg http_proxy=$http_proxy -f ./docker/Dockerfile.react .
|
||||
```
|
||||
|
||||
Then run the command `docker images`, you will have the following Docker Images:
|
||||
|
||||
1. `opea/llm-docsum-tgi:latest`
|
||||
2. `opea/docsum:latest`
|
||||
3. `opea/docsum-ui:latest`
|
||||
4. `opea/docsum-react-ui:latest`
|
||||
|
||||
## 🚀 Start Microservices and MegaService
|
||||
|
||||
### Required Models
|
||||
|
||||
Default model is "Intel/neural-chat-7b-v3-3". Change "LLM_MODEL_ID" in environment variables below if you want to use another model.
|
||||
For gated models, you also need to provide [HuggingFace token](https://huggingface.co/docs/hub/security-tokens) in "HUGGINGFACEHUB_API_TOKEN" environment variable.
|
||||
|
||||
### Setup Environment Variables
|
||||
|
||||
Since the `compose.yaml` will consume some environment variables, you need to setup them in advance as below.
|
||||
|
||||
```bash
|
||||
export DOCSUM_TGI_IMAGE="ghcr.io/huggingface/text-generation-inference:2.3.1-rocm"
|
||||
export DOCSUM_LLM_MODEL_ID="Intel/neural-chat-7b-v3-3"
|
||||
export HOST_IP=${host_ip}
|
||||
export DOCSUM_TGI_SERVICE_PORT="18882"
|
||||
export DOCSUM_TGI_LLM_ENDPOINT="http://${HOST_IP}:${DOCSUM_TGI_SERVICE_PORT}"
|
||||
export DOCSUM_HUGGINGFACEHUB_API_TOKEN=${your_hf_api_token}
|
||||
export DOCSUM_LLM_SERVER_PORT="8008"
|
||||
export DOCSUM_BACKEND_SERVER_PORT="8888"
|
||||
export DOCSUM_FRONTEND_PORT="5173"
|
||||
```
|
||||
|
||||
Note: Please replace with `host_ip` with your external IP address, do not use localhost.
|
||||
|
||||
Note: In order to limit access to a subset of GPUs, please pass each device individually using one or more -device /dev/dri/rendered<node>, where <node> is the card index, starting from 128. (https://rocm.docs.amd.com/projects/install-on-linux/en/latest/how-to/docker.html#docker-restrict-gpus)
|
||||
|
||||
Example for set isolation for 1 GPU
|
||||
|
||||
```
|
||||
- /dev/dri/card0:/dev/dri/card0
|
||||
- /dev/dri/renderD128:/dev/dri/renderD128
|
||||
```
|
||||
|
||||
Example for set isolation for 2 GPUs
|
||||
|
||||
```
|
||||
- /dev/dri/card0:/dev/dri/card0
|
||||
- /dev/dri/renderD128:/dev/dri/renderD128
|
||||
- /dev/dri/card1:/dev/dri/card1
|
||||
- /dev/dri/renderD129:/dev/dri/renderD129
|
||||
```
|
||||
|
||||
Please find more information about accessing and restricting AMD GPUs in the link (https://rocm.docs.amd.com/projects/install-on-linux/en/latest/how-to/docker.html#docker-restrict-gpus)
|
||||
|
||||
### Start Microservice Docker Containers
|
||||
|
||||
```bash
|
||||
cd GenAIExamples/DocSum/docker_compose/amd/gpu/rocm
|
||||
docker compose up -d
|
||||
```
|
||||
|
||||
### Validate Microservices
|
||||
|
||||
1. TGI Service
|
||||
|
||||
```bash
|
||||
curl http://${host_ip}:8008/generate \
|
||||
-X POST \
|
||||
-d '{"inputs":"What is Deep Learning?","parameters":{"max_new_tokens":64, "do_sample": true}}' \
|
||||
-H 'Content-Type: application/json'
|
||||
```
|
||||
|
||||
2. LLM Microservice
|
||||
|
||||
```bash
|
||||
curl http://${host_ip}:9000/v1/chat/docsum \
|
||||
-X POST \
|
||||
-d '{"query":"Text Embeddings Inference (TEI) is a toolkit for deploying and serving open source text embeddings and sequence classification models. TEI enables high-performance extraction for the most popular models, including FlagEmbedding, Ember, GTE and E5."}' \
|
||||
-H 'Content-Type: application/json'
|
||||
```
|
||||
|
||||
3. MegaService
|
||||
|
||||
```bash
|
||||
curl http://${host_ip}:8888/v1/docsum -H "Content-Type: application/json" -d '{
|
||||
"messages": "Text Embeddings Inference (TEI) is a toolkit for deploying and serving open source text embeddings and sequence classification models. TEI enables high-performance extraction for the most popular models, including FlagEmbedding, Ember, GTE and E5.","max_tokens":32, "language":"en", "stream":false
|
||||
}'
|
||||
```
|
||||
|
||||
## 🚀 Launch the Svelte UI
|
||||
|
||||
Open this URL `http://{host_ip}:5173` in your browser to access the frontend.
|
||||
|
||||

|
||||
|
||||
Here is an example for summarizing a article.
|
||||
|
||||

|
||||
|
||||
## 🚀 Launch the React UI (Optional)
|
||||
|
||||
To access the React-based frontend, modify the UI service in the `compose.yaml` file. Replace `docsum-rocm-ui-server` service with the `docsum-rocm-react-ui-server` service as per the config below:
|
||||
|
||||
```yaml
|
||||
docsum-rocm-react-ui-server:
|
||||
image: ${REGISTRY:-opea}/docsum-react-ui:${TAG:-latest}
|
||||
container_name: docsum-rocm-react-ui-server
|
||||
depends_on:
|
||||
- docsum-rocm-backend-server
|
||||
ports:
|
||||
- "5174:80"
|
||||
environment:
|
||||
- no_proxy=${no_proxy}
|
||||
- https_proxy=${https_proxy}
|
||||
- http_proxy=${http_proxy}
|
||||
- DOC_BASE_URL=${BACKEND_SERVICE_ENDPOINT}
|
||||
```
|
||||
|
||||
Open this URL `http://{host_ip}:5175` in your browser to access the frontend.
|
||||
|
||||

|
||||
89
DocSum/docker_compose/amd/gpu/rocm/compose.yaml
Normal file
89
DocSum/docker_compose/amd/gpu/rocm/compose.yaml
Normal file
@@ -0,0 +1,89 @@
|
||||
# Copyright (C) 2024 Advanced Micro Devices, Inc.
|
||||
# SPDX-License-Identifier: Apache-2.0
|
||||
|
||||
services:
|
||||
docsum-tgi-service:
|
||||
image: ghcr.io/huggingface/text-generation-inference:2.3.1-rocm
|
||||
container_name: docsum-tgi-service
|
||||
ports:
|
||||
- "${DOCSUM_TGI_SERVICE_PORT}:80"
|
||||
environment:
|
||||
no_proxy: ${no_proxy}
|
||||
http_proxy: ${http_proxy}
|
||||
https_proxy: ${https_proxy}
|
||||
TGI_LLM_ENDPOINT: "http://${HOST_IP}:${DOCSUM_TGI_SERVICE_PORT}"
|
||||
HUGGINGFACEHUB_API_TOKEN: ${DOCSUM_HUGGINGFACEHUB_API_TOKEN}
|
||||
volumes:
|
||||
- "/var/opea/docsum-service/data:/data"
|
||||
shm_size: 1g
|
||||
devices:
|
||||
- /dev/kfd:/dev/kfd
|
||||
- /dev/dri/${DOCSUM_CARD_ID}:/dev/dri/${DOCSUM_CARD_ID}
|
||||
- /dev/dri/${DOCSUM_RENDER_ID}:/dev/dri/${DOCSUM_RENDER_ID}
|
||||
cap_add:
|
||||
- SYS_PTRACE
|
||||
group_add:
|
||||
- video
|
||||
security_opt:
|
||||
- seccomp:unconfined
|
||||
ipc: host
|
||||
command: --model-id ${DOCSUM_LLM_MODEL_ID}
|
||||
docsum-llm-server:
|
||||
image: ${REGISTRY:-opea}/llm-docsum-tgi:${TAG:-latest}
|
||||
container_name: docsum-llm-server
|
||||
depends_on:
|
||||
- docsum-tgi-service
|
||||
ports:
|
||||
- "${DOCSUM_LLM_SERVER_PORT}:9000"
|
||||
ipc: host
|
||||
group_add:
|
||||
- video
|
||||
security_opt:
|
||||
- seccomp:unconfined
|
||||
cap_add:
|
||||
- SYS_PTRACE
|
||||
devices:
|
||||
- /dev/kfd:/dev/kfd
|
||||
- /dev/dri/${DOCSUM_CARD_ID}:/dev/dri/${DOCSUM_CARD_ID}
|
||||
- /dev/dri/${DOCSUM_RENDER_ID}:/dev/dri/${DOCSUM_RENDER_ID}
|
||||
environment:
|
||||
no_proxy: ${no_proxy}
|
||||
http_proxy: ${http_proxy}
|
||||
https_proxy: ${https_proxy}
|
||||
TGI_LLM_ENDPOINT: "http://${HOST_IP}:${DOCSUM_TGI_SERVICE_PORT}"
|
||||
HUGGINGFACEHUB_API_TOKEN: ${DOCSUM_HUGGINGFACEHUB_API_TOKEN}
|
||||
restart: unless-stopped
|
||||
docsum-backend-server:
|
||||
image: ${REGISTRY:-opea}/docsum:${TAG:-latest}
|
||||
container_name: docsum-backend-server
|
||||
depends_on:
|
||||
- docsum-tgi-service
|
||||
- docsum-llm-server
|
||||
ports:
|
||||
- "${DOCSUM_BACKEND_SERVER_PORT}:8888"
|
||||
environment:
|
||||
- no_proxy=${no_proxy}
|
||||
- https_proxy=${https_proxy}
|
||||
- http_proxy=${http_proxy}
|
||||
- MEGA_SERVICE_HOST_IP=${HOST_IP}
|
||||
- LLM_SERVICE_HOST_IP=${HOST_IP}
|
||||
ipc: host
|
||||
restart: always
|
||||
docsum-ui-server:
|
||||
image: ${REGISTRY:-opea}/docsum-ui:${TAG:-latest}
|
||||
container_name: docsum-ui-server
|
||||
depends_on:
|
||||
- docsum-backend-server
|
||||
ports:
|
||||
- "${DOCSUM_FRONTEND_PORT}:5173"
|
||||
environment:
|
||||
- no_proxy=${no_proxy}
|
||||
- https_proxy=${https_proxy}
|
||||
- http_proxy=${http_proxy}
|
||||
- DOC_BASE_URL="http://${HOST_IP}:${DOCSUM_BACKEND_SERVER_PORT}/v1/docsum"
|
||||
ipc: host
|
||||
restart: always
|
||||
|
||||
networks:
|
||||
default:
|
||||
driver: bridge
|
||||
15
DocSum/docker_compose/amd/gpu/rocm/set_env.sh
Normal file
15
DocSum/docker_compose/amd/gpu/rocm/set_env.sh
Normal file
@@ -0,0 +1,15 @@
|
||||
#!/usr/bin/env bash
|
||||
|
||||
# Copyright (C) 2024 Advanced Micro Devices, Inc.
|
||||
# SPDX-License-Identifier: Apache-2.0
|
||||
|
||||
export DOCSUM_TGI_IMAGE="ghcr.io/huggingface/text-generation-inference:2.3.1-rocm"
|
||||
export DOCSUM_LLM_MODEL_ID="Intel/neural-chat-7b-v3-3"
|
||||
export HOST_IP=${host_ip}
|
||||
export DOCSUM_TGI_SERVICE_PORT="8008"
|
||||
export DOCSUM_TGI_LLM_ENDPOINT="http://${HOST_IP}:${DOCSUM_TGI_SERVICE_PORT}"
|
||||
export DOCSUM_HUGGINGFACEHUB_API_TOKEN=${your_hf_api_token}
|
||||
export DOCSUM_LLM_SERVER_PORT="9000"
|
||||
export DOCSUM_BACKEND_SERVER_PORT="8888"
|
||||
export DOCSUM_FRONTEND_PORT="5173"
|
||||
export BACKEND_SERVICE_ENDPOINT="http://${HOST_IP}:${DOCSUM_BACKEND_SERVER_PORT}/v1/docsum"
|
||||
191
DocSum/tests/test_compose_on_rocm.sh
Normal file
191
DocSum/tests/test_compose_on_rocm.sh
Normal file
@@ -0,0 +1,191 @@
|
||||
#!/bin/bash
|
||||
# Copyright (C) 2024 Advanced Micro Devices, Inc.
|
||||
# SPDX-License-Identifier: Apache-2.0
|
||||
|
||||
set -xe
|
||||
IMAGE_REPO=${IMAGE_REPO:-"opea"}
|
||||
IMAGE_TAG=${IMAGE_TAG:-"latest"}
|
||||
echo "REGISTRY=IMAGE_REPO=${IMAGE_REPO}"
|
||||
echo "TAG=IMAGE_TAG=${IMAGE_TAG}"
|
||||
|
||||
|
||||
|
||||
WORKPATH=$(dirname "$PWD")
|
||||
LOG_PATH="$WORKPATH/tests"
|
||||
ip_address=$(hostname -I | awk '{print $1}')
|
||||
|
||||
export REGISTRY=${IMAGE_REPO}
|
||||
export TAG=${IMAGE_TAG}
|
||||
export DOCSUM_TGI_IMAGE="ghcr.io/huggingface/text-generation-inference:2.3.1-rocm"
|
||||
export DOCSUM_LLM_MODEL_ID="Intel/neural-chat-7b-v3-3"
|
||||
export HOST_IP=${ip_address}
|
||||
export DOCSUM_TGI_SERVICE_PORT="8008"
|
||||
export DOCSUM_TGI_LLM_ENDPOINT="http://${HOST_IP}:8008"
|
||||
export DOCSUM_HUGGINGFACEHUB_API_TOKEN=${HUGGINGFACEHUB_API_TOKEN}
|
||||
export DOCSUM_LLM_SERVER_PORT="9000"
|
||||
export DOCSUM_BACKEND_SERVER_PORT="8888"
|
||||
export DOCSUM_FRONTEND_PORT="5552"
|
||||
export MEGA_SERVICE_HOST_IP=${ip_address}
|
||||
export LLM_SERVICE_HOST_IP=${ip_address}
|
||||
export BACKEND_SERVICE_ENDPOINT="http://${ip_address}:8888/v1/docsum"
|
||||
export DOCSUM_CARD_ID="card1"
|
||||
export DOCSUM_RENDER_ID="renderD136"
|
||||
|
||||
function build_docker_images() {
|
||||
cd "$WORKPATH"/docker_image_build
|
||||
git clone https://github.com/opea-project/GenAIComps.git && cd GenAIComps && git checkout "${opea_branch:-"main"}" && cd ../
|
||||
|
||||
echo "Build all the images with --no-cache, check docker_image_build.log for details..."
|
||||
service_list="docsum docsum-ui llm-docsum-tgi"
|
||||
docker compose -f build.yaml build ${service_list} --no-cache > "${LOG_PATH}"/docker_image_build.log
|
||||
|
||||
docker pull ghcr.io/huggingface/text-generation-inference:2.3.1-rocm
|
||||
docker images && sleep 1s
|
||||
}
|
||||
|
||||
function start_services() {
|
||||
cd "$WORKPATH"/docker_compose/amd/gpu/rocm
|
||||
|
||||
|
||||
|
||||
sed -i "s/backend_address/$ip_address/g" "$WORKPATH"/ui/svelte/.env
|
||||
|
||||
# Start Docker Containers
|
||||
docker compose up -d > "${LOG_PATH}"/start_services_with_compose.log
|
||||
|
||||
until [[ "$n" -ge 100 ]]; do
|
||||
docker logs docsum-tgi-service > "${LOG_PATH}"/tgi_service_start.log
|
||||
if grep -q Connected "${LOG_PATH}"/tgi_service_start.log; then
|
||||
break
|
||||
fi
|
||||
sleep 5s
|
||||
n=$((n+1))
|
||||
done
|
||||
}
|
||||
|
||||
function validate_services() {
|
||||
local URL="$1"
|
||||
local EXPECTED_RESULT="$2"
|
||||
local SERVICE_NAME="$3"
|
||||
local DOCKER_NAME="$4"
|
||||
local INPUT_DATA="$5"
|
||||
|
||||
local HTTP_STATUS=$(curl -s -o /dev/null -w "%{http_code}" -X POST -d "$INPUT_DATA" -H 'Content-Type: application/json' "$URL")
|
||||
if [ "$HTTP_STATUS" -eq 200 ]; then
|
||||
echo "[ $SERVICE_NAME ] HTTP status is 200. Checking content..."
|
||||
|
||||
local CONTENT=$(curl -s -X POST -d "$INPUT_DATA" -H 'Content-Type: application/json' "$URL" | tee "${LOG_PATH}"/"${SERVICE_NAME}".log)
|
||||
|
||||
if echo "$CONTENT" | grep -q "$EXPECTED_RESULT"; then
|
||||
echo "[ $SERVICE_NAME ] Content is as expected."
|
||||
else
|
||||
echo "[ $SERVICE_NAME ] Content does not match the expected result: $CONTENT"
|
||||
docker logs "${DOCKER_NAME}" >> "${LOG_PATH}"/"${SERVICE_NAME}".log
|
||||
exit 1
|
||||
fi
|
||||
else
|
||||
echo "[ $SERVICE_NAME ] HTTP status is not 200. Received status was $HTTP_STATUS"
|
||||
docker logs "${DOCKER_NAME}" >> "${LOG_PATH}"/"${SERVICE_NAME}".log
|
||||
exit 1
|
||||
fi
|
||||
sleep 1s
|
||||
}
|
||||
|
||||
function validate_microservices() {
|
||||
# Check if the microservices are running correctly.
|
||||
|
||||
# tgi for llm service
|
||||
validate_services \
|
||||
"${ip_address}:8008/generate" \
|
||||
"generated_text" \
|
||||
"tgi-llm" \
|
||||
"tgi-service" \
|
||||
'{"inputs":"What is Deep Learning?","parameters":{"max_new_tokens":17, "do_sample": true}}'
|
||||
|
||||
# llm microservice
|
||||
validate_services \
|
||||
"${ip_address}:9000/v1/chat/docsum" \
|
||||
"data: " \
|
||||
"llm" \
|
||||
"docsum-llm-server" \
|
||||
'{"query":"Text Embeddings Inference (TEI) is a toolkit for deploying and serving open source text embeddings and sequence classification models. TEI enables high-performance extraction for the most popular models, including FlagEmbedding, Ember, GTE and E5."}'
|
||||
}
|
||||
|
||||
function validate_megaservice() {
|
||||
local SERVICE_NAME="mega-docsum"
|
||||
local DOCKER_NAME="docsum-backend-server"
|
||||
local EXPECTED_RESULT="embedding"
|
||||
local INPUT_DATA="messages=Text Embeddings Inference (TEI) is a toolkit for deploying and serving open source text embeddings and sequence classification models. TEI enables high-performance extraction for the most popular models, including FlagEmbedding, Ember, GTE and E5."
|
||||
local URL="${ip_address}:8888/v1/docsum"
|
||||
|
||||
local HTTP_STATUS=$(curl -s -o /dev/null -w "%{http_code}" -X POST -F "$INPUT_DATA" -H 'Content-Type: multipart/form-data' "$URL")
|
||||
if [ "$HTTP_STATUS" -eq 200 ]; then
|
||||
echo "[ $SERVICE_NAME ] HTTP status is 200. Checking content..."
|
||||
|
||||
local CONTENT=$(curl -s -X POST -F "$INPUT_DATA" -H 'Content-Type: multipart/form-data' "$URL" | tee "${LOG_PATH}"/"${SERVICE_NAME}".log)
|
||||
|
||||
if echo "$CONTENT" | grep -q "$EXPECTED_RESULT"; then
|
||||
echo "[ $SERVICE_NAME ] Content is as expected."
|
||||
else
|
||||
echo "[ $SERVICE_NAME ] Content does not match the expected result: $CONTENT"
|
||||
docker logs "${DOCKER_NAME}" >> "${LOG_PATH}"/"${SERVICE_NAME}".log
|
||||
exit 1
|
||||
fi
|
||||
else
|
||||
echo "[ $SERVICE_NAME ] HTTP status is not 200. Received status was $HTTP_STATUS"
|
||||
docker logs "${DOCKER_NAME}" >> "${LOG_PATH}"/"${SERVICE_NAME}".log
|
||||
exit 1
|
||||
fi
|
||||
sleep 1s
|
||||
}
|
||||
|
||||
#function validate_frontend() {
|
||||
# cd "$WORKPATH"/ui/svelte
|
||||
# local conda_env_name="OPEA_e2e"
|
||||
# export PATH=${HOME}/miniforge3/bin/:$PATH
|
||||
# if conda info --envs | grep -q "$conda_env_name"; then
|
||||
# echo "$conda_env_name exist!"
|
||||
# else
|
||||
# conda create -n ${conda_env_name} python=3.12 -y
|
||||
# fi
|
||||
# source activate ${conda_env_name}
|
||||
#
|
||||
# sed -i "s/localhost/$ip_address/g" playwright.config.ts
|
||||
#
|
||||
# conda install -c conda-forge nodejs -y
|
||||
# npm install && npm ci && npx playwright install --with-deps
|
||||
# node -v && npm -v && pip list
|
||||
#
|
||||
# exit_status=0
|
||||
# npx playwright test || exit_status=$?
|
||||
#
|
||||
# if [ $exit_status -ne 0 ]; then
|
||||
# echo "[TEST INFO]: ---------frontend test failed---------"
|
||||
# exit $exit_status
|
||||
# else
|
||||
# echo "[TEST INFO]: ---------frontend test passed---------"
|
||||
# fi
|
||||
#}
|
||||
|
||||
function stop_docker() {
|
||||
cd "$WORKPATH"/docker_compose/amd/gpu/rocm
|
||||
docker compose stop && docker compose rm -f
|
||||
}
|
||||
|
||||
function main() {
|
||||
|
||||
stop_docker
|
||||
|
||||
if [[ "$IMAGE_REPO" == "opea" ]]; then build_docker_images; fi
|
||||
start_services
|
||||
|
||||
validate_microservices
|
||||
validate_megaservice
|
||||
#validate_frontend
|
||||
|
||||
stop_docker
|
||||
echo y | docker system prune
|
||||
|
||||
}
|
||||
|
||||
main
|
||||
Reference in New Issue
Block a user