Add compose example for DocSum amd rocm deployment (#1125)

Signed-off-by: Artem Astafev <a.astafev@datamonsters.com>
Co-authored-by: pre-commit-ci[bot] <66853113+pre-commit-ci[bot]@users.noreply.github.com>
This commit is contained in:
Artem Astafev
2024-11-18 08:09:12 +07:00
committed by GitHub
parent 7949045176
commit b1bb6db52d
4 changed files with 469 additions and 0 deletions

View File

@@ -0,0 +1,174 @@
# Build and deploy DocSum Application on AMD GPU (ROCm)
## Build images
## 🚀 Build Docker Images
First of all, you need to build Docker Images locally and install the python package of it.
### 1. Build LLM Image
```bash
git clone https://github.com/opea-project/GenAIComps.git
cd GenAIComps
docker build -t opea/llm-docsum-tgi:latest --build-arg https_proxy=$https_proxy --build-arg http_proxy=$http_proxy -f comps/llms/summarization/tgi/langchain/Dockerfile .
```
Then run the command `docker images`, you will have the following four Docker Images:
### 2. Build MegaService Docker Image
To construct the Mega Service, we utilize the [GenAIComps](https://github.com/opea-project/GenAIComps.git) microservice pipeline within the `docsum.py` Python script. Build the MegaService Docker image via below command:
```bash
git clone https://github.com/opea-project/GenAIExamples
cd GenAIExamples/DocSum/
docker build -t opea/docsum:latest --build-arg https_proxy=$https_proxy --build-arg http_proxy=$http_proxy -f Dockerfile .
```
### 3. Build UI Docker Image
Build the frontend Docker image via below command:
```bash
cd GenAIExamples/DocSum/ui
docker build -t opea/docsum-ui:latest --build-arg https_proxy=$https_proxy --build-arg http_proxy=$http_proxy -f docker/Dockerfile .
```
Then run the command `docker images`, you will have the following Docker Images:
1. `opea/llm-docsum-tgi:latest`
2. `opea/docsum:latest`
3. `opea/docsum-ui:latest`
### 4. Build React UI Docker Image
Build the frontend Docker image via below command:
```bash
cd GenAIExamples/DocSum/ui
export BACKEND_SERVICE_ENDPOINT="http://${host_ip}:8888/v1/docsum"
docker build -t opea/docsum-react-ui:latest --build-arg BACKEND_SERVICE_ENDPOINT=$BACKEND_SERVICE_ENDPOINT -f ./docker/Dockerfile.react .
docker build -t opea/docsum-react-ui:latest --build-arg BACKEND_SERVICE_ENDPOINT=$BACKEND_SERVICE_ENDPOINT --build-arg https_proxy=$https_proxy --build-arg http_proxy=$http_proxy -f ./docker/Dockerfile.react .
```
Then run the command `docker images`, you will have the following Docker Images:
1. `opea/llm-docsum-tgi:latest`
2. `opea/docsum:latest`
3. `opea/docsum-ui:latest`
4. `opea/docsum-react-ui:latest`
## 🚀 Start Microservices and MegaService
### Required Models
Default model is "Intel/neural-chat-7b-v3-3". Change "LLM_MODEL_ID" in environment variables below if you want to use another model.
For gated models, you also need to provide [HuggingFace token](https://huggingface.co/docs/hub/security-tokens) in "HUGGINGFACEHUB_API_TOKEN" environment variable.
### Setup Environment Variables
Since the `compose.yaml` will consume some environment variables, you need to setup them in advance as below.
```bash
export DOCSUM_TGI_IMAGE="ghcr.io/huggingface/text-generation-inference:2.3.1-rocm"
export DOCSUM_LLM_MODEL_ID="Intel/neural-chat-7b-v3-3"
export HOST_IP=${host_ip}
export DOCSUM_TGI_SERVICE_PORT="18882"
export DOCSUM_TGI_LLM_ENDPOINT="http://${HOST_IP}:${DOCSUM_TGI_SERVICE_PORT}"
export DOCSUM_HUGGINGFACEHUB_API_TOKEN=${your_hf_api_token}
export DOCSUM_LLM_SERVER_PORT="8008"
export DOCSUM_BACKEND_SERVER_PORT="8888"
export DOCSUM_FRONTEND_PORT="5173"
```
Note: Please replace with `host_ip` with your external IP address, do not use localhost.
Note: In order to limit access to a subset of GPUs, please pass each device individually using one or more -device /dev/dri/rendered<node>, where <node> is the card index, starting from 128. (https://rocm.docs.amd.com/projects/install-on-linux/en/latest/how-to/docker.html#docker-restrict-gpus)
Example for set isolation for 1 GPU
```
- /dev/dri/card0:/dev/dri/card0
- /dev/dri/renderD128:/dev/dri/renderD128
```
Example for set isolation for 2 GPUs
```
- /dev/dri/card0:/dev/dri/card0
- /dev/dri/renderD128:/dev/dri/renderD128
- /dev/dri/card1:/dev/dri/card1
- /dev/dri/renderD129:/dev/dri/renderD129
```
Please find more information about accessing and restricting AMD GPUs in the link (https://rocm.docs.amd.com/projects/install-on-linux/en/latest/how-to/docker.html#docker-restrict-gpus)
### Start Microservice Docker Containers
```bash
cd GenAIExamples/DocSum/docker_compose/amd/gpu/rocm
docker compose up -d
```
### Validate Microservices
1. TGI Service
```bash
curl http://${host_ip}:8008/generate \
-X POST \
-d '{"inputs":"What is Deep Learning?","parameters":{"max_new_tokens":64, "do_sample": true}}' \
-H 'Content-Type: application/json'
```
2. LLM Microservice
```bash
curl http://${host_ip}:9000/v1/chat/docsum \
-X POST \
-d '{"query":"Text Embeddings Inference (TEI) is a toolkit for deploying and serving open source text embeddings and sequence classification models. TEI enables high-performance extraction for the most popular models, including FlagEmbedding, Ember, GTE and E5."}' \
-H 'Content-Type: application/json'
```
3. MegaService
```bash
curl http://${host_ip}:8888/v1/docsum -H "Content-Type: application/json" -d '{
"messages": "Text Embeddings Inference (TEI) is a toolkit for deploying and serving open source text embeddings and sequence classification models. TEI enables high-performance extraction for the most popular models, including FlagEmbedding, Ember, GTE and E5.","max_tokens":32, "language":"en", "stream":false
}'
```
## 🚀 Launch the Svelte UI
Open this URL `http://{host_ip}:5173` in your browser to access the frontend.
![project-screenshot](https://github.com/intel-ai-tce/GenAIExamples/assets/21761437/93b1ed4b-4b76-4875-927e-cc7818b4825b)
Here is an example for summarizing a article.
![image](https://github.com/intel-ai-tce/GenAIExamples/assets/21761437/67ecb2ec-408d-4e81-b124-6ded6b833f55)
## 🚀 Launch the React UI (Optional)
To access the React-based frontend, modify the UI service in the `compose.yaml` file. Replace `docsum-rocm-ui-server` service with the `docsum-rocm-react-ui-server` service as per the config below:
```yaml
docsum-rocm-react-ui-server:
image: ${REGISTRY:-opea}/docsum-react-ui:${TAG:-latest}
container_name: docsum-rocm-react-ui-server
depends_on:
- docsum-rocm-backend-server
ports:
- "5174:80"
environment:
- no_proxy=${no_proxy}
- https_proxy=${https_proxy}
- http_proxy=${http_proxy}
- DOC_BASE_URL=${BACKEND_SERVICE_ENDPOINT}
```
Open this URL `http://{host_ip}:5175` in your browser to access the frontend.
![project-screenshot](../../../../assets/img/docsum-ui-react.png)

View File

@@ -0,0 +1,89 @@
# Copyright (C) 2024 Advanced Micro Devices, Inc.
# SPDX-License-Identifier: Apache-2.0
services:
docsum-tgi-service:
image: ghcr.io/huggingface/text-generation-inference:2.3.1-rocm
container_name: docsum-tgi-service
ports:
- "${DOCSUM_TGI_SERVICE_PORT}:80"
environment:
no_proxy: ${no_proxy}
http_proxy: ${http_proxy}
https_proxy: ${https_proxy}
TGI_LLM_ENDPOINT: "http://${HOST_IP}:${DOCSUM_TGI_SERVICE_PORT}"
HUGGINGFACEHUB_API_TOKEN: ${DOCSUM_HUGGINGFACEHUB_API_TOKEN}
volumes:
- "/var/opea/docsum-service/data:/data"
shm_size: 1g
devices:
- /dev/kfd:/dev/kfd
- /dev/dri/${DOCSUM_CARD_ID}:/dev/dri/${DOCSUM_CARD_ID}
- /dev/dri/${DOCSUM_RENDER_ID}:/dev/dri/${DOCSUM_RENDER_ID}
cap_add:
- SYS_PTRACE
group_add:
- video
security_opt:
- seccomp:unconfined
ipc: host
command: --model-id ${DOCSUM_LLM_MODEL_ID}
docsum-llm-server:
image: ${REGISTRY:-opea}/llm-docsum-tgi:${TAG:-latest}
container_name: docsum-llm-server
depends_on:
- docsum-tgi-service
ports:
- "${DOCSUM_LLM_SERVER_PORT}:9000"
ipc: host
group_add:
- video
security_opt:
- seccomp:unconfined
cap_add:
- SYS_PTRACE
devices:
- /dev/kfd:/dev/kfd
- /dev/dri/${DOCSUM_CARD_ID}:/dev/dri/${DOCSUM_CARD_ID}
- /dev/dri/${DOCSUM_RENDER_ID}:/dev/dri/${DOCSUM_RENDER_ID}
environment:
no_proxy: ${no_proxy}
http_proxy: ${http_proxy}
https_proxy: ${https_proxy}
TGI_LLM_ENDPOINT: "http://${HOST_IP}:${DOCSUM_TGI_SERVICE_PORT}"
HUGGINGFACEHUB_API_TOKEN: ${DOCSUM_HUGGINGFACEHUB_API_TOKEN}
restart: unless-stopped
docsum-backend-server:
image: ${REGISTRY:-opea}/docsum:${TAG:-latest}
container_name: docsum-backend-server
depends_on:
- docsum-tgi-service
- docsum-llm-server
ports:
- "${DOCSUM_BACKEND_SERVER_PORT}:8888"
environment:
- no_proxy=${no_proxy}
- https_proxy=${https_proxy}
- http_proxy=${http_proxy}
- MEGA_SERVICE_HOST_IP=${HOST_IP}
- LLM_SERVICE_HOST_IP=${HOST_IP}
ipc: host
restart: always
docsum-ui-server:
image: ${REGISTRY:-opea}/docsum-ui:${TAG:-latest}
container_name: docsum-ui-server
depends_on:
- docsum-backend-server
ports:
- "${DOCSUM_FRONTEND_PORT}:5173"
environment:
- no_proxy=${no_proxy}
- https_proxy=${https_proxy}
- http_proxy=${http_proxy}
- DOC_BASE_URL="http://${HOST_IP}:${DOCSUM_BACKEND_SERVER_PORT}/v1/docsum"
ipc: host
restart: always
networks:
default:
driver: bridge

View File

@@ -0,0 +1,15 @@
#!/usr/bin/env bash
# Copyright (C) 2024 Advanced Micro Devices, Inc.
# SPDX-License-Identifier: Apache-2.0
export DOCSUM_TGI_IMAGE="ghcr.io/huggingface/text-generation-inference:2.3.1-rocm"
export DOCSUM_LLM_MODEL_ID="Intel/neural-chat-7b-v3-3"
export HOST_IP=${host_ip}
export DOCSUM_TGI_SERVICE_PORT="8008"
export DOCSUM_TGI_LLM_ENDPOINT="http://${HOST_IP}:${DOCSUM_TGI_SERVICE_PORT}"
export DOCSUM_HUGGINGFACEHUB_API_TOKEN=${your_hf_api_token}
export DOCSUM_LLM_SERVER_PORT="9000"
export DOCSUM_BACKEND_SERVER_PORT="8888"
export DOCSUM_FRONTEND_PORT="5173"
export BACKEND_SERVICE_ENDPOINT="http://${HOST_IP}:${DOCSUM_BACKEND_SERVER_PORT}/v1/docsum"

View File

@@ -0,0 +1,191 @@
#!/bin/bash
# Copyright (C) 2024 Advanced Micro Devices, Inc.
# SPDX-License-Identifier: Apache-2.0
set -xe
IMAGE_REPO=${IMAGE_REPO:-"opea"}
IMAGE_TAG=${IMAGE_TAG:-"latest"}
echo "REGISTRY=IMAGE_REPO=${IMAGE_REPO}"
echo "TAG=IMAGE_TAG=${IMAGE_TAG}"
WORKPATH=$(dirname "$PWD")
LOG_PATH="$WORKPATH/tests"
ip_address=$(hostname -I | awk '{print $1}')
export REGISTRY=${IMAGE_REPO}
export TAG=${IMAGE_TAG}
export DOCSUM_TGI_IMAGE="ghcr.io/huggingface/text-generation-inference:2.3.1-rocm"
export DOCSUM_LLM_MODEL_ID="Intel/neural-chat-7b-v3-3"
export HOST_IP=${ip_address}
export DOCSUM_TGI_SERVICE_PORT="8008"
export DOCSUM_TGI_LLM_ENDPOINT="http://${HOST_IP}:8008"
export DOCSUM_HUGGINGFACEHUB_API_TOKEN=${HUGGINGFACEHUB_API_TOKEN}
export DOCSUM_LLM_SERVER_PORT="9000"
export DOCSUM_BACKEND_SERVER_PORT="8888"
export DOCSUM_FRONTEND_PORT="5552"
export MEGA_SERVICE_HOST_IP=${ip_address}
export LLM_SERVICE_HOST_IP=${ip_address}
export BACKEND_SERVICE_ENDPOINT="http://${ip_address}:8888/v1/docsum"
export DOCSUM_CARD_ID="card1"
export DOCSUM_RENDER_ID="renderD136"
function build_docker_images() {
cd "$WORKPATH"/docker_image_build
git clone https://github.com/opea-project/GenAIComps.git && cd GenAIComps && git checkout "${opea_branch:-"main"}" && cd ../
echo "Build all the images with --no-cache, check docker_image_build.log for details..."
service_list="docsum docsum-ui llm-docsum-tgi"
docker compose -f build.yaml build ${service_list} --no-cache > "${LOG_PATH}"/docker_image_build.log
docker pull ghcr.io/huggingface/text-generation-inference:2.3.1-rocm
docker images && sleep 1s
}
function start_services() {
cd "$WORKPATH"/docker_compose/amd/gpu/rocm
sed -i "s/backend_address/$ip_address/g" "$WORKPATH"/ui/svelte/.env
# Start Docker Containers
docker compose up -d > "${LOG_PATH}"/start_services_with_compose.log
until [[ "$n" -ge 100 ]]; do
docker logs docsum-tgi-service > "${LOG_PATH}"/tgi_service_start.log
if grep -q Connected "${LOG_PATH}"/tgi_service_start.log; then
break
fi
sleep 5s
n=$((n+1))
done
}
function validate_services() {
local URL="$1"
local EXPECTED_RESULT="$2"
local SERVICE_NAME="$3"
local DOCKER_NAME="$4"
local INPUT_DATA="$5"
local HTTP_STATUS=$(curl -s -o /dev/null -w "%{http_code}" -X POST -d "$INPUT_DATA" -H 'Content-Type: application/json' "$URL")
if [ "$HTTP_STATUS" -eq 200 ]; then
echo "[ $SERVICE_NAME ] HTTP status is 200. Checking content..."
local CONTENT=$(curl -s -X POST -d "$INPUT_DATA" -H 'Content-Type: application/json' "$URL" | tee "${LOG_PATH}"/"${SERVICE_NAME}".log)
if echo "$CONTENT" | grep -q "$EXPECTED_RESULT"; then
echo "[ $SERVICE_NAME ] Content is as expected."
else
echo "[ $SERVICE_NAME ] Content does not match the expected result: $CONTENT"
docker logs "${DOCKER_NAME}" >> "${LOG_PATH}"/"${SERVICE_NAME}".log
exit 1
fi
else
echo "[ $SERVICE_NAME ] HTTP status is not 200. Received status was $HTTP_STATUS"
docker logs "${DOCKER_NAME}" >> "${LOG_PATH}"/"${SERVICE_NAME}".log
exit 1
fi
sleep 1s
}
function validate_microservices() {
# Check if the microservices are running correctly.
# tgi for llm service
validate_services \
"${ip_address}:8008/generate" \
"generated_text" \
"tgi-llm" \
"tgi-service" \
'{"inputs":"What is Deep Learning?","parameters":{"max_new_tokens":17, "do_sample": true}}'
# llm microservice
validate_services \
"${ip_address}:9000/v1/chat/docsum" \
"data: " \
"llm" \
"docsum-llm-server" \
'{"query":"Text Embeddings Inference (TEI) is a toolkit for deploying and serving open source text embeddings and sequence classification models. TEI enables high-performance extraction for the most popular models, including FlagEmbedding, Ember, GTE and E5."}'
}
function validate_megaservice() {
local SERVICE_NAME="mega-docsum"
local DOCKER_NAME="docsum-backend-server"
local EXPECTED_RESULT="embedding"
local INPUT_DATA="messages=Text Embeddings Inference (TEI) is a toolkit for deploying and serving open source text embeddings and sequence classification models. TEI enables high-performance extraction for the most popular models, including FlagEmbedding, Ember, GTE and E5."
local URL="${ip_address}:8888/v1/docsum"
local HTTP_STATUS=$(curl -s -o /dev/null -w "%{http_code}" -X POST -F "$INPUT_DATA" -H 'Content-Type: multipart/form-data' "$URL")
if [ "$HTTP_STATUS" -eq 200 ]; then
echo "[ $SERVICE_NAME ] HTTP status is 200. Checking content..."
local CONTENT=$(curl -s -X POST -F "$INPUT_DATA" -H 'Content-Type: multipart/form-data' "$URL" | tee "${LOG_PATH}"/"${SERVICE_NAME}".log)
if echo "$CONTENT" | grep -q "$EXPECTED_RESULT"; then
echo "[ $SERVICE_NAME ] Content is as expected."
else
echo "[ $SERVICE_NAME ] Content does not match the expected result: $CONTENT"
docker logs "${DOCKER_NAME}" >> "${LOG_PATH}"/"${SERVICE_NAME}".log
exit 1
fi
else
echo "[ $SERVICE_NAME ] HTTP status is not 200. Received status was $HTTP_STATUS"
docker logs "${DOCKER_NAME}" >> "${LOG_PATH}"/"${SERVICE_NAME}".log
exit 1
fi
sleep 1s
}
#function validate_frontend() {
# cd "$WORKPATH"/ui/svelte
# local conda_env_name="OPEA_e2e"
# export PATH=${HOME}/miniforge3/bin/:$PATH
# if conda info --envs | grep -q "$conda_env_name"; then
# echo "$conda_env_name exist!"
# else
# conda create -n ${conda_env_name} python=3.12 -y
# fi
# source activate ${conda_env_name}
#
# sed -i "s/localhost/$ip_address/g" playwright.config.ts
#
# conda install -c conda-forge nodejs -y
# npm install && npm ci && npx playwright install --with-deps
# node -v && npm -v && pip list
#
# exit_status=0
# npx playwright test || exit_status=$?
#
# if [ $exit_status -ne 0 ]; then
# echo "[TEST INFO]: ---------frontend test failed---------"
# exit $exit_status
# else
# echo "[TEST INFO]: ---------frontend test passed---------"
# fi
#}
function stop_docker() {
cd "$WORKPATH"/docker_compose/amd/gpu/rocm
docker compose stop && docker compose rm -f
}
function main() {
stop_docker
if [[ "$IMAGE_REPO" == "opea" ]]; then build_docker_images; fi
start_services
validate_microservices
validate_megaservice
#validate_frontend
stop_docker
echo y | docker system prune
}
main