Enable vllm for CodeTrans (#1626)

Set vllm as default llm serving, and add related docker compose files, readmes, and test scripts.

Issue: https://github.com/opea-project/GenAIExamples/issues/1436

Signed-off-by: letonghan <letong.han@intel.com>
Co-authored-by: pre-commit-ci[bot] <66853113+pre-commit-ci[bot]@users.noreply.github.com>
This commit is contained in:
Letong Han
2025-03-07 10:56:21 +08:00
committed by GitHub
parent 5aecea8e47
commit 9180f1066d
12 changed files with 801 additions and 73 deletions

View File

@@ -2,6 +2,8 @@
This document outlines the deployment process for a CodeTrans application utilizing the [GenAIComps](https://github.com/opea-project/GenAIComps.git) microservice pipeline on Intel Xeon server. The steps include Docker image creation, container deployment via Docker Compose, and service execution using microservices `llm`. We will publish the Docker images to Docker Hub soon, it will simplify the deployment process for this service.
The default pipeline deploys with vLLM as the LLM serving component. It also provides options of using TGI backend for LLM microservice, please refer to [start-microservice-docker-containers](#start-microservice-docker-containers) section in this page.
## 🚀 Create an AWS Xeon Instance
To run the example on a AWS Xeon instance, start by creating an AWS account if you don't have one already. Then, get started with the [EC2 Console](https://console.aws.amazon.com/ec2/v2/home). AWS EC2 M7i, C7i, C7i-flex and M7i-flex are Intel Xeon Scalable processor instances suitable for the task. (code named Sapphire Rapids).
@@ -63,6 +65,37 @@ By default, the LLM model is set to a default value as listed below:
Change the `LLM_MODEL_ID` below for your needs.
For users in China who are unable to download models directly from Huggingface, you can use [ModelScope](https://www.modelscope.cn/models) or a Huggingface mirror to download models. The vLLM/TGI can load the models either online or offline as described below:
1. Online
```bash
export HF_TOKEN=${your_hf_token}
export HF_ENDPOINT="https://hf-mirror.com"
model_name="mistralai/Mistral-7B-Instruct-v0.3"
# Start vLLM LLM Service
docker run -p 8008:80 -v ./data:/data --name vllm-service -e HF_ENDPOINT=$HF_ENDPOINT -e http_proxy=$http_proxy -e https_proxy=$https_proxy --shm-size 128g opea/vllm:latest --model $model_name --host 0.0.0.0 --port 80
# Start TGI LLM Service
docker run -p 8008:80 -v ./data:/data --name tgi-service -e HF_ENDPOINT=$HF_ENDPOINT -e http_proxy=$http_proxy -e https_proxy=$https_proxy --shm-size 1g ghcr.io/huggingface/text-generation-inference:2.4.0-intel-cpu --model-id $model_name
```
2. Offline
- Search your model name in ModelScope. For example, check [this page](https://www.modelscope.cn/models/rubraAI/Mistral-7B-Instruct-v0.3/files) for model `mistralai/Mistral-7B-Instruct-v0.3`.
- Click on `Download this model` button, and choose one way to download the model to your local path `/path/to/model`.
- Run the following command to start the LLM service.
```bash
export HF_TOKEN=${your_hf_token}
export model_path="/path/to/model"
# Start vLLM LLM Service
docker run -p 8008:80 -v $model_path:/data --name vllm-service --shm-size 128g opea/vllm:latest --model /data --host 0.0.0.0 --port 80
# Start TGI LLM Service
docker run -p 8008:80 -v $model_path:/data --name tgi-service --shm-size 1g ghcr.io/huggingface/text-generation-inference:2.4.0-intel-cpu --model-id /data
```
### Setup Environment Variables
1. Set the required environment variables:
@@ -95,15 +128,47 @@ Change the `LLM_MODEL_ID` below for your needs.
```bash
cd GenAIExamples/CodeTrans/docker_compose/intel/cpu/xeon
docker compose up -d
```
If use vLLM as the LLM serving backend.
```bash
docker compose -f compose.yaml up -d
```
If use TGI as the LLM serving backend.
```bash
docker compose -f compose_tgi.yaml up -d
```
### Validate Microservices
1. TGI Service
1. LLM backend Service
In the first startup, this service will take more time to download, load and warm up the model. After it's finished, the service will be ready.
Try the command below to check whether the LLM serving is ready.
```bash
curl http://${host_ip}:8008/generate \
# vLLM service
docker logs codetrans-xeon-vllm-service 2>&1 | grep complete
# If the service is ready, you will get the response like below.
INFO: Application startup complete.
```
```bash
# TGI service
docker logs codetrans-xeon-tgi-service | grep Connected
# If the service is ready, you will get the response like below.
2024-09-03T02:47:53.402023Z INFO text_generation_router::server: router/src/server.rs:2311: Connected
```
Then try the `cURL` command below to validate services.
```bash
# either vLLM or TGI service
curl http://${host_ip}:8008/v1/chat/completions \
-X POST \
-d '{"inputs":" ### System: Please translate the following Golang codes into Python codes. ### Original codes: '\'''\'''\''Golang \npackage main\n\nimport \"fmt\"\nfunc main() {\n fmt.Println(\"Hello, World!\");\n '\'''\'''\'' ### Translated codes:","parameters":{"max_new_tokens":17, "do_sample": true}}' \
-H 'Content-Type: application/json'

View File

@@ -2,9 +2,9 @@
# SPDX-License-Identifier: Apache-2.0
services:
tgi-service:
image: ghcr.io/huggingface/text-generation-inference:2.4.0-intel-cpu
container_name: codetrans-tgi-service
vllm-service:
image: ${REGISTRY:-opea}/vllm:${TAG:-latest}
container_name: codetrans-xeon-vllm-service
ports:
- "8008:80"
volumes:
@@ -15,18 +15,19 @@ services:
http_proxy: ${http_proxy}
https_proxy: ${https_proxy}
HF_TOKEN: ${HUGGINGFACEHUB_API_TOKEN}
host_ip: ${host_ip}
LLM_MODEL_ID: ${LLM_MODEL_ID}
VLLM_TORCH_PROFILER_DIR: "/mnt"
healthcheck:
test: ["CMD-SHELL", "curl -f http://$host_ip:8008/health || exit 1"]
interval: 10s
timeout: 10s
retries: 100
command: --model-id ${LLM_MODEL_ID} --cuda-graphs 0
command: --model $LLM_MODEL_ID --host 0.0.0.0 --port 80
llm:
image: ${REGISTRY:-opea}/llm-textgen:${TAG:-latest}
container_name: llm-textgen-server
container_name: codetrans-xeon-llm-server
depends_on:
tgi-service:
vllm-service:
condition: service_healthy
ports:
- "9000:9000"
@@ -35,18 +36,19 @@ services:
no_proxy: ${no_proxy}
http_proxy: ${http_proxy}
https_proxy: ${https_proxy}
LLM_ENDPOINT: ${TGI_LLM_ENDPOINT}
LLM_ENDPOINT: ${LLM_ENDPOINT}
LLM_MODEL_ID: ${LLM_MODEL_ID}
HUGGINGFACEHUB_API_TOKEN: ${HUGGINGFACEHUB_API_TOKEN}
LLM_COMPONENT_NAME: ${LLM_COMPONENT_NAME}
HF_TOKEN: ${HUGGINGFACEHUB_API_TOKEN}
restart: unless-stopped
codetrans-xeon-backend-server:
image: ${REGISTRY:-opea}/codetrans:${TAG:-latest}
container_name: codetrans-xeon-backend-server
depends_on:
- tgi-service
- vllm-service
- llm
ports:
- "7777:7777"
- "${BACKEND_SERVICE_PORT:-7777}:7777"
environment:
- no_proxy=${no_proxy}
- https_proxy=${https_proxy}
@@ -61,7 +63,7 @@ services:
depends_on:
- codetrans-xeon-backend-server
ports:
- "5173:5173"
- "${FRONTEND_SERVICE_PORT:-5173}:5173"
environment:
- no_proxy=${no_proxy}
- https_proxy=${https_proxy}

View File

@@ -0,0 +1,95 @@
# Copyright (C) 2024 Intel Corporation
# SPDX-License-Identifier: Apache-2.0
services:
tgi-service:
image: ghcr.io/huggingface/text-generation-inference:2.4.0-intel-cpu
container_name: codetrans-xeon-tgi-service
ports:
- "8008:80"
volumes:
- "${MODEL_CACHE}:/data"
shm_size: 1g
environment:
no_proxy: ${no_proxy}
http_proxy: ${http_proxy}
https_proxy: ${https_proxy}
HF_TOKEN: ${HUGGINGFACEHUB_API_TOKEN}
host_ip: ${host_ip}
healthcheck:
test: ["CMD-SHELL", "curl -f http://$host_ip:8008/health || exit 1"]
interval: 10s
timeout: 10s
retries: 100
command: --model-id ${LLM_MODEL_ID} --cuda-graphs 0
llm:
image: ${REGISTRY:-opea}/llm-textgen:${TAG:-latest}
container_name: codetrans-xeon-llm-server
depends_on:
tgi-service:
condition: service_healthy
ports:
- "9000:9000"
ipc: host
environment:
no_proxy: ${no_proxy}
http_proxy: ${http_proxy}
https_proxy: ${https_proxy}
LLM_ENDPOINT: ${LLM_ENDPOINT}
LLM_MODEL_ID: ${LLM_MODEL_ID}
LLM_COMPONENT_NAME: ${LLM_COMPONENT_NAME}
HUGGINGFACEHUB_API_TOKEN: ${HUGGINGFACEHUB_API_TOKEN}
restart: unless-stopped
codetrans-xeon-backend-server:
image: ${REGISTRY:-opea}/codetrans:${TAG:-latest}
container_name: codetrans-xeon-backend-server
depends_on:
- tgi-service
- llm
ports:
- "${BACKEND_SERVICE_PORT:-7777}:7777"
environment:
- no_proxy=${no_proxy}
- https_proxy=${https_proxy}
- http_proxy=${http_proxy}
- MEGA_SERVICE_HOST_IP=${MEGA_SERVICE_HOST_IP}
- LLM_SERVICE_HOST_IP=${LLM_SERVICE_HOST_IP}
ipc: host
restart: always
codetrans-xeon-ui-server:
image: ${REGISTRY:-opea}/codetrans-ui:${TAG:-latest}
container_name: codetrans-xeon-ui-server
depends_on:
- codetrans-xeon-backend-server
ports:
- "${FRONTEND_SERVICE_PORT:-5173}:5173"
environment:
- no_proxy=${no_proxy}
- https_proxy=${https_proxy}
- http_proxy=${http_proxy}
- BASE_URL=${BACKEND_SERVICE_ENDPOINT}
ipc: host
restart: always
codetrans-xeon-nginx-server:
image: ${REGISTRY:-opea}/nginx:${TAG:-latest}
container_name: codetrans-xeon-nginx-server
depends_on:
- codetrans-xeon-backend-server
- codetrans-xeon-ui-server
ports:
- "${NGINX_PORT:-80}:80"
environment:
- no_proxy=${no_proxy}
- https_proxy=${https_proxy}
- http_proxy=${http_proxy}
- FRONTEND_SERVICE_IP=${FRONTEND_SERVICE_IP}
- FRONTEND_SERVICE_PORT=${FRONTEND_SERVICE_PORT}
- BACKEND_SERVICE_NAME=${BACKEND_SERVICE_NAME}
- BACKEND_SERVICE_IP=${BACKEND_SERVICE_IP}
- BACKEND_SERVICE_PORT=${BACKEND_SERVICE_PORT}
ipc: host
restart: always
networks:
default:
driver: bridge

View File

@@ -2,6 +2,8 @@
This document outlines the deployment process for a CodeTrans application utilizing the [GenAIComps](https://github.com/opea-project/GenAIComps.git) microservice pipeline on Intel Gaudi server. The steps include Docker image creation, container deployment via Docker Compose, and service execution using microservices `llm`. We will publish the Docker images to Docker Hub soon, it will simplify the deployment process for this service.
The default pipeline deploys with vLLM as the LLM serving component. It also provides options of using TGI backend for LLM microservice, please refer to [start-microservice-docker-containers](#start-microservice-docker-containers) section in this page.
## 🚀 Build Docker Images
First of all, you need to build Docker Images locally and install the python package of it. This step can be ignored after the Docker images published to Docker hub.
@@ -55,6 +57,37 @@ By default, the LLM model is set to a default value as listed below:
Change the `LLM_MODEL_ID` below for your needs.
For users in China who are unable to download models directly from Huggingface, you can use [ModelScope](https://www.modelscope.cn/models) or a Huggingface mirror to download models. The vLLM/TGI can load the models either online or offline as described below:
1. Online
```bash
export HF_TOKEN=${your_hf_token}
export HF_ENDPOINT="https://hf-mirror.com"
model_name="mistralai/Mistral-7B-Instruct-v0.3"
# Start vLLM LLM Service
docker run -p 8008:80 -v ./data:/data --name vllm-service -e HF_ENDPOINT=$HF_ENDPOINT -e http_proxy=$http_proxy -e https_proxy=$https_proxy --shm-size 128g opea/vllm:latest --model $model_name --host 0.0.0.0 --port 80
# Start TGI LLM Service
docker run -p 8008:80 -v ./data:/data --name tgi-service -e HF_ENDPOINT=$HF_ENDPOINT -e http_proxy=$http_proxy -e https_proxy=$https_proxy --shm-size 1g ghcr.io/huggingface/text-generation-inference:2.4.0-intel-cpu --model-id $model_name
```
2. Offline
- Search your model name in ModelScope. For example, check [this page](https://www.modelscope.cn/models/rubraAI/Mistral-7B-Instruct-v0.3/files) for model `mistralai/Mistral-7B-Instruct-v0.3`.
- Click on `Download this model` button, and choose one way to download the model to your local path `/path/to/model`.
- Run the following command to start the LLM service.
```bash
export HF_TOKEN=${your_hf_token}
export model_path="/path/to/model"
# Start vLLM LLM Service
docker run -p 8008:80 -v $model_path:/data --name vllm-service --shm-size 128g opea/vllm:latest --model /data --host 0.0.0.0 --port 80
# Start TGI LLM Service
docker run -p 8008:80 -v $model_path:/data --name tgi-service --shm-size 1g ghcr.io/huggingface/text-generation-inference:2.4.0-intel-cpu --model-id /data
```
### Setup Environment Variables
1. Set the required environment variables:
@@ -87,12 +120,43 @@ Change the `LLM_MODEL_ID` below for your needs.
```bash
cd GenAIExamples/CodeTrans/docker_compose/intel/hpu/gaudi
docker compose up -d
```
If use vLLM as the LLM serving backend.
```bash
docker compose -f compose.yaml up -d
```
If use TGI as the LLM serving backend.
```bash
docker compose -f compose_tgi.yaml up -d
```
### Validate Microservices
1. TGI Service
1. LLM backend Service
In the first startup, this service will take more time to download, load and warm up the model. After it's finished, the service will be ready.
Try the command below to check whether the LLM serving is ready.
```bash
# vLLM service
docker logs codetrans-gaudi-vllm-service 2>&1 | grep complete
# If the service is ready, you will get the response like below.
INFO: Application startup complete.
```
```bash
# TGI service
docker logs codetrans-gaudi-tgi-service | grep Connected
# If the service is ready, you will get the response like below.
2024-09-03T02:47:53.402023Z INFO text_generation_router::server: router/src/server.rs:2311: Connected
```
Then try the `cURL` command below to validate services.
```bash
curl http://${host_ip}:8008/generate \

View File

@@ -2,9 +2,9 @@
# SPDX-License-Identifier: Apache-2.0
services:
tgi-service:
image: ghcr.io/huggingface/tgi-gaudi:2.0.6
container_name: codetrans-tgi-service
vllm-service:
image: ${REGISTRY:-opea}/vllm-gaudi:${TAG:-latest}
container_name: codetrans-gaudi-vllm-service
ports:
- "8008:80"
volumes:
@@ -13,28 +13,27 @@ services:
no_proxy: ${no_proxy}
http_proxy: ${http_proxy}
https_proxy: ${https_proxy}
HF_TOKEN: ${HUGGINGFACEHUB_API_TOKEN}
HABANA_VISIBLE_DEVICES: all
OMPI_MCA_btl_vader_single_copy_mechanism: none
HUGGING_FACE_HUB_TOKEN: ${HUGGINGFACEHUB_API_TOKEN}
ENABLE_HPU_GRAPH: true
LIMIT_HPU_GRAPH: true
USE_FLASH_ATTENTION: true
FLASH_ATTENTION_RECOMPUTE: true
LLM_MODEL_ID: ${LLM_MODEL_ID}
NUM_CARDS: ${NUM_CARDS}
VLLM_TORCH_PROFILER_DIR: "/mnt"
healthcheck:
test: ["CMD-SHELL", "sleep 500 && exit 0"]
interval: 1s
timeout: 505s
retries: 1
test: ["CMD-SHELL", "curl -f http://$host_ip:8008/health || exit 1"]
interval: 10s
timeout: 10s
retries: 100
runtime: habana
cap_add:
- SYS_NICE
ipc: host
command: --model-id ${LLM_MODEL_ID} --max-input-length 1024 --max-total-tokens 2048
command: --model $LLM_MODEL_ID --tensor-parallel-size ${NUM_CARDS} --host 0.0.0.0 --port 80 --block-size ${BLOCK_SIZE} --max-num-seqs ${MAX_NUM_SEQS} --max-seq_len-to-capture ${MAX_SEQ_LEN_TO_CAPTURE}
llm:
image: ${REGISTRY:-opea}/llm-textgen:${TAG:-latest}
container_name: llm-textgen-gaudi-server
container_name: codetrans-xeon-llm-server
depends_on:
tgi-service:
vllm-service:
condition: service_healthy
ports:
- "9000:9000"
@@ -43,18 +42,19 @@ services:
no_proxy: ${no_proxy}
http_proxy: ${http_proxy}
https_proxy: ${https_proxy}
LLM_ENDPOINT: ${TGI_LLM_ENDPOINT}
LLM_ENDPOINT: ${LLM_ENDPOINT}
LLM_MODEL_ID: ${LLM_MODEL_ID}
HUGGINGFACEHUB_API_TOKEN: ${HUGGINGFACEHUB_API_TOKEN}
LLM_COMPONENT_NAME: ${LLM_COMPONENT_NAME}
HF_TOKEN: ${HUGGINGFACEHUB_API_TOKEN}
restart: unless-stopped
codetrans-gaudi-backend-server:
image: ${REGISTRY:-opea}/codetrans:${TAG:-latest}
container_name: codetrans-gaudi-backend-server
depends_on:
- tgi-service
- vllm-service
- llm
ports:
- "7777:7777"
- "${BACKEND_SERVICE_PORT:-7777}:7777"
environment:
- no_proxy=${no_proxy}
- https_proxy=${https_proxy}
@@ -69,7 +69,7 @@ services:
depends_on:
- codetrans-gaudi-backend-server
ports:
- "5173:5173"
- "${FRONTEND_SERVICE_PORT:-5173}:5173"
environment:
- no_proxy=${no_proxy}
- https_proxy=${https_proxy}

View File

@@ -0,0 +1,99 @@
# Copyright (C) 2024 Intel Corporation
# SPDX-License-Identifier: Apache-2.0
services:
tgi-service:
image: ghcr.io/huggingface/tgi-gaudi:2.0.6
container_name: codetrans-gaudi-tgi-service
ports:
- "8008:80"
volumes:
- "${MODEL_CACHE}:/data"
environment:
no_proxy: ${no_proxy}
http_proxy: ${http_proxy}
https_proxy: ${https_proxy}
HUGGING_FACE_HUB_TOKEN: ${HUGGINGFACEHUB_API_TOKEN}
HF_HUB_DISABLE_PROGRESS_BARS: 1
HF_HUB_ENABLE_HF_TRANSFER: 0
HABANA_VISIBLE_DEVICES: all
OMPI_MCA_btl_vader_single_copy_mechanism: none
ENABLE_HPU_GRAPH: true
LIMIT_HPU_GRAPH: true
USE_FLASH_ATTENTION: true
FLASH_ATTENTION_RECOMPUTE: true
runtime: habana
cap_add:
- SYS_NICE
ipc: host
command: --model-id ${LLM_MODEL_ID} --max-input-length 2048 --max-total-tokens 4096
llm:
image: ${REGISTRY:-opea}/llm-textgen:${TAG:-latest}
container_name: codetrans-gaudi-llm-server
depends_on:
- tgi-service
ports:
- "9000:9000"
ipc: host
environment:
no_proxy: ${no_proxy}
http_proxy: ${http_proxy}
https_proxy: ${https_proxy}
LLM_ENDPOINT: ${LLM_ENDPOINT}
LLM_MODEL_ID: ${LLM_MODEL_ID}
LLM_COMPONENT_NAME: ${LLM_COMPONENT_NAME}
HUGGINGFACEHUB_API_TOKEN: ${HUGGINGFACEHUB_API_TOKEN}
restart: unless-stopped
codetrans-gaudi-backend-server:
image: ${REGISTRY:-opea}/codetrans:${TAG:-latest}
container_name: codetrans-gaudi-backend-server
depends_on:
- tgi-service
- llm
ports:
- "${BACKEND_SERVICE_PORT:-7777}:7777"
environment:
- no_proxy=${no_proxy}
- https_proxy=${https_proxy}
- http_proxy=${http_proxy}
- MEGA_SERVICE_HOST_IP=${MEGA_SERVICE_HOST_IP}
- LLM_SERVICE_HOST_IP=${LLM_SERVICE_HOST_IP}
ipc: host
restart: always
codetrans-gaudi-ui-server:
image: ${REGISTRY:-opea}/codetrans-ui:${TAG:-latest}
container_name: codetrans-gaudi-ui-server
depends_on:
- codetrans-gaudi-backend-server
ports:
- "${FRONTEND_SERVICE_PORT:-5173}:5173"
environment:
- no_proxy=${no_proxy}
- https_proxy=${https_proxy}
- http_proxy=${http_proxy}
- BASE_URL=${BACKEND_SERVICE_ENDPOINT}
ipc: host
restart: always
codetrans-gaudi-nginx-server:
image: ${REGISTRY:-opea}/nginx:${TAG:-latest}
container_name: codetrans-gaudi-nginx-server
depends_on:
- codetrans-gaudi-backend-server
- codetrans-gaudi-ui-server
ports:
- "${NGINX_PORT:-80}:80"
environment:
- no_proxy=${no_proxy}
- https_proxy=${https_proxy}
- http_proxy=${http_proxy}
- FRONTEND_SERVICE_IP=${FRONTEND_SERVICE_IP}
- FRONTEND_SERVICE_PORT=${FRONTEND_SERVICE_PORT}
- BACKEND_SERVICE_NAME=${BACKEND_SERVICE_NAME}
- BACKEND_SERVICE_IP=${BACKEND_SERVICE_IP}
- BACKEND_SERVICE_PORT=${BACKEND_SERVICE_PORT}
ipc: host
restart: always
networks:
default:
driver: bridge

View File

@@ -8,7 +8,12 @@ popd > /dev/null
export LLM_MODEL_ID="mistralai/Mistral-7B-Instruct-v0.3"
export TGI_LLM_ENDPOINT="http://${host_ip}:8008"
export LLM_ENDPOINT="http://${host_ip}:8008"
export LLM_COMPONENT_NAME="OpeaTextGenService"
export NUM_CARDS=1
export BLOCK_SIZE=128
export MAX_NUM_SEQS=256
export MAX_SEQ_LEN_TO_CAPTURE=2048
export MEGA_SERVICE_HOST_IP=${host_ip}
export LLM_SERVICE_HOST_IP=${host_ip}
export BACKEND_SERVICE_ENDPOINT="http://${host_ip}:7777/v1/codetrans"

View File

@@ -23,6 +23,18 @@ services:
dockerfile: comps/llms/src/text-generation/Dockerfile
extends: codetrans
image: ${REGISTRY:-opea}/llm-textgen:${TAG:-latest}
vllm:
build:
context: vllm
dockerfile: Dockerfile.cpu
extends: codetrans
image: ${REGISTRY:-opea}/vllm:${TAG:-latest}
vllm-gaudi:
build:
context: vllm-fork
dockerfile: Dockerfile.hpu
extends: codetrans
image: ${REGISTRY:-opea}/vllm-gaudi:${TAG:-latest}
nginx:
build:
context: GenAIComps

View File

@@ -30,12 +30,12 @@ function build_docker_images() {
cd $WORKPATH/docker_image_build
git clone --depth 1 --branch ${opea_branch} https://github.com/opea-project/GenAIComps.git
git clone --depth 1 --branch v0.6.4.post2+Gaudi-1.19.0 https://github.com/HabanaAI/vllm-fork.git
echo "Build all the images with --no-cache, check docker_image_build.log for details..."
service_list="codetrans codetrans-ui llm-textgen nginx"
service_list="codetrans codetrans-ui llm-textgen vllm-gaudi nginx"
docker compose -f build.yaml build ${service_list} --no-cache > ${LOG_PATH}/docker_image_build.log
docker pull ghcr.io/huggingface/tgi-gaudi:2.0.6
docker images && sleep 1s
}
@@ -45,7 +45,12 @@ function start_services() {
export http_proxy=${http_proxy}
export https_proxy=${http_proxy}
export LLM_MODEL_ID="mistralai/Mistral-7B-Instruct-v0.3"
export TGI_LLM_ENDPOINT="http://${ip_address}:8008"
export LLM_ENDPOINT="http://${ip_address}:8008"
export LLM_COMPONENT_NAME="OpeaTextGenService"
export NUM_CARDS=1
export BLOCK_SIZE=128
export MAX_NUM_SEQS=256
export MAX_SEQ_LEN_TO_CAPTURE=2048
export HUGGINGFACEHUB_API_TOKEN=${HUGGINGFACEHUB_API_TOKEN}
export MEGA_SERVICE_HOST_IP=${ip_address}
export LLM_SERVICE_HOST_IP=${ip_address}
@@ -65,13 +70,15 @@ function start_services() {
n=0
until [[ "$n" -ge 100 ]]; do
docker logs codetrans-tgi-service > ${LOG_PATH}/tgi_service_start.log
if grep -q Connected ${LOG_PATH}/tgi_service_start.log; then
docker logs codetrans-gaudi-vllm-service > ${LOG_PATH}/vllm_service_start.log 2>&1
if grep -q complete ${LOG_PATH}/vllm_service_start.log; then
break
fi
sleep 5s
n=$((n+1))
done
sleep 1m
}
function validate_services() {
@@ -103,27 +110,19 @@ function validate_services() {
}
function validate_microservices() {
# tgi for embedding service
validate_services \
"${ip_address}:8008/generate" \
"generated_text" \
"tgi" \
"codetrans-tgi-service" \
'{"inputs":"What is Deep Learning?","parameters":{"max_new_tokens":17, "do_sample": true}}'
# llm microservice
validate_services \
"${ip_address}:9000/v1/chat/completions" \
"data: " \
"llm" \
"llm-textgen-gaudi-server" \
"codetrans-xeon-llm-server" \
'{"query":" ### System: Please translate the following Golang codes into Python codes. ### Original codes: '\'''\'''\''Golang \npackage main\n\nimport \"fmt\"\nfunc main() {\n fmt.Println(\"Hello, World!\");\n '\'''\'''\'' ### Translated codes:"}'
}
function validate_megaservice() {
# Curl the Mega Service
validate_services \
"${ip_address}:7777/v1/codetrans" \
"${ip_address}:${BACKEND_SERVICE_PORT}/v1/codetrans" \
"print" \
"mega-codetrans" \
"codetrans-gaudi-backend-server" \
@@ -131,7 +130,7 @@ function validate_megaservice() {
# test the megeservice via nginx
validate_services \
"${ip_address}:80/v1/codetrans" \
"${ip_address}:${NGINX_PORT}/v1/codetrans" \
"print" \
"mega-codetrans-nginx" \
"codetrans-gaudi-nginx-server" \
@@ -170,7 +169,7 @@ function validate_frontend() {
function stop_docker() {
cd $WORKPATH/docker_compose/intel/hpu/gaudi
docker compose stop && docker compose rm -f
docker compose -f compose.yaml stop && docker compose rm -f
}
function main() {

View File

@@ -30,12 +30,16 @@ function build_docker_images() {
cd $WORKPATH/docker_image_build
git clone --depth 1 --branch ${opea_branch} https://github.com/opea-project/GenAIComps.git
git clone https://github.com/vllm-project/vllm.git && cd vllm
VLLM_VER="$(git describe --tags "$(git rev-list --tags --max-count=1)" )"
echo "Check out vLLM tag ${VLLM_VER}"
git checkout ${VLLM_VER} &> /dev/null
cd ../
echo "Build all the images with --no-cache, check docker_image_build.log for details..."
service_list="codetrans codetrans-ui llm-textgen nginx"
service_list="codetrans codetrans-ui llm-textgen vllm nginx"
docker compose -f build.yaml build ${service_list} --no-cache > ${LOG_PATH}/docker_image_build.log
docker pull ghcr.io/huggingface/text-generation-inference:2.4.0-intel-cpu
docker images && sleep 1s
}
@@ -44,7 +48,8 @@ function start_services() {
export http_proxy=${http_proxy}
export https_proxy=${http_proxy}
export LLM_MODEL_ID="mistralai/Mistral-7B-Instruct-v0.3"
export TGI_LLM_ENDPOINT="http://${ip_address}:8008"
export LLM_ENDPOINT="http://${ip_address}:8008"
export LLM_COMPONENT_NAME="OpeaTextGenService"
export HUGGINGFACEHUB_API_TOKEN=${HUGGINGFACEHUB_API_TOKEN}
export MEGA_SERVICE_HOST_IP=${ip_address}
export LLM_SERVICE_HOST_IP=${ip_address}
@@ -60,17 +65,19 @@ function start_services() {
sed -i "s/backend_address/$ip_address/g" $WORKPATH/ui/svelte/.env
# Start Docker Containers
docker compose up -d > ${LOG_PATH}/start_services_with_compose.log
docker compose -f compose.yaml up -d > ${LOG_PATH}/start_services_with_compose.log
n=0
until [[ "$n" -ge 100 ]]; do
docker logs codetrans-tgi-service > ${LOG_PATH}/tgi_service_start.log
if grep -q Connected ${LOG_PATH}/tgi_service_start.log; then
docker logs codetrans-xeon-vllm-service > ${LOG_PATH}/vllm_service_start.log 2>&1
if grep -q complete ${LOG_PATH}/vllm_service_start.log; then
break
fi
sleep 5s
n=$((n+1))
done
sleep 1m
}
function validate_services() {
@@ -102,20 +109,12 @@ function validate_services() {
}
function validate_microservices() {
# tgi for embedding service
validate_services \
"${ip_address}:8008/generate" \
"generated_text" \
"tgi" \
"codetrans-tgi-service" \
'{"inputs":"What is Deep Learning?","parameters":{"max_new_tokens":17, "do_sample": true}}'
# llm microservice
validate_services \
"${ip_address}:9000/v1/chat/completions" \
"data: " \
"llm" \
"llm-textgen-server" \
"codetrans-xeon-llm-server" \
'{"query":" ### System: Please translate the following Golang codes into Python codes. ### Original codes: '\'''\'''\''Golang \npackage main\n\nimport \"fmt\"\nfunc main() {\n fmt.Println(\"Hello, World!\");\n '\'''\'''\'' ### Translated codes:"}'
}
@@ -123,7 +122,7 @@ function validate_microservices() {
function validate_megaservice() {
# Curl the Mega Service
validate_services \
"${ip_address}:7777/v1/codetrans" \
"${ip_address}:${BACKEND_SERVICE_PORT}/v1/codetrans" \
"print" \
"mega-codetrans" \
"codetrans-xeon-backend-server" \
@@ -131,7 +130,7 @@ function validate_megaservice() {
# test the megeservice via nginx
validate_services \
"${ip_address}:80/v1/codetrans" \
"${ip_address}:${NGINX_PORT}/v1/codetrans" \
"print" \
"mega-codetrans-nginx" \
"codetrans-xeon-nginx-server" \
@@ -169,7 +168,7 @@ function validate_frontend() {
function stop_docker() {
cd $WORKPATH/docker_compose/intel/cpu/xeon/
docker compose stop && docker compose rm -f
docker compose -f compose.yaml stop && docker compose rm -f
}
function main() {

View File

@@ -0,0 +1,194 @@
#!/bin/bash
# Copyright (C) 2024 Intel Corporation
# SPDX-License-Identifier: Apache-2.0
set -xe
IMAGE_REPO=${IMAGE_REPO:-"opea"}
IMAGE_TAG=${IMAGE_TAG:-"latest"}
echo "REGISTRY=IMAGE_REPO=${IMAGE_REPO}"
echo "TAG=IMAGE_TAG=${IMAGE_TAG}"
export REGISTRY=${IMAGE_REPO}
export TAG=${IMAGE_TAG}
export MODEL_CACHE=${model_cache:-"./data"}
WORKPATH=$(dirname "$PWD")
LOG_PATH="$WORKPATH/tests"
ip_address=$(hostname -I | awk '{print $1}')
function build_docker_images() {
opea_branch=${opea_branch:-"main"}
# If the opea_branch isn't main, replace the git clone branch in Dockerfile.
if [[ "${opea_branch}" != "main" ]]; then
cd $WORKPATH
OLD_STRING="RUN git clone --depth 1 https://github.com/opea-project/GenAIComps.git"
NEW_STRING="RUN git clone --depth 1 --branch ${opea_branch} https://github.com/opea-project/GenAIComps.git"
find . -type f -name "Dockerfile*" | while read -r file; do
echo "Processing file: $file"
sed -i "s|$OLD_STRING|$NEW_STRING|g" "$file"
done
fi
cd $WORKPATH/docker_image_build
git clone --depth 1 --branch ${opea_branch} https://github.com/opea-project/GenAIComps.git
echo "Build all the images with --no-cache, check docker_image_build.log for details..."
service_list="codetrans codetrans-ui llm-textgen nginx"
docker compose -f build.yaml build ${service_list} --no-cache > ${LOG_PATH}/docker_image_build.log
docker pull ghcr.io/huggingface/tgi-gaudi:2.0.6
docker images && sleep 1s
}
function start_services() {
cd $WORKPATH/docker_compose/intel/hpu/gaudi/
export http_proxy=${http_proxy}
export https_proxy=${http_proxy}
export LLM_MODEL_ID="mistralai/Mistral-7B-Instruct-v0.3"
export LLM_ENDPOINT="http://${ip_address}:8008"
export LLM_COMPONENT_NAME="OpeaTextGenService"
export HUGGINGFACEHUB_API_TOKEN=${HUGGINGFACEHUB_API_TOKEN}
export MEGA_SERVICE_HOST_IP=${ip_address}
export LLM_SERVICE_HOST_IP=${ip_address}
export BACKEND_SERVICE_ENDPOINT="http://${ip_address}:7777/v1/codetrans"
export FRONTEND_SERVICE_IP=${ip_address}
export FRONTEND_SERVICE_PORT=5173
export BACKEND_SERVICE_NAME=codetrans
export BACKEND_SERVICE_IP=${ip_address}
export BACKEND_SERVICE_PORT=7777
export NGINX_PORT=80
export host_ip=${ip_address}
sed -i "s/backend_address/$ip_address/g" $WORKPATH/ui/svelte/.env
# Start Docker Containers
docker compose -f compose_tgi.yaml up -d > ${LOG_PATH}/start_services_with_compose.log
n=0
until [[ "$n" -ge 100 ]]; do
docker logs codetrans-gaudi-tgi-service > ${LOG_PATH}/tgi_service_start.log
if grep -q Connected ${LOG_PATH}/tgi_service_start.log; then
break
fi
sleep 5s
n=$((n+1))
done
sleep 1m
}
function validate_services() {
local URL="$1"
local EXPECTED_RESULT="$2"
local SERVICE_NAME="$3"
local DOCKER_NAME="$4"
local INPUT_DATA="$5"
local HTTP_STATUS=$(curl -s -o /dev/null -w "%{http_code}" -X POST -d "$INPUT_DATA" -H 'Content-Type: application/json' "$URL")
if [ "$HTTP_STATUS" -eq 200 ]; then
echo "[ $SERVICE_NAME ] HTTP status is 200. Checking content..."
local CONTENT=$(curl -s -X POST -d "$INPUT_DATA" -H 'Content-Type: application/json' "$URL" | tee ${LOG_PATH}/${SERVICE_NAME}.log)
if echo "$CONTENT" | grep -q "$EXPECTED_RESULT"; then
echo "[ $SERVICE_NAME ] Content is as expected."
else
echo "[ $SERVICE_NAME ] Content does not match the expected result: $CONTENT"
docker logs ${DOCKER_NAME} >> ${LOG_PATH}/${SERVICE_NAME}.log
exit 1
fi
else
echo "[ $SERVICE_NAME ] HTTP status is not 200. Received status was $HTTP_STATUS"
docker logs ${DOCKER_NAME} >> ${LOG_PATH}/${SERVICE_NAME}.log
exit 1
fi
sleep 5s
}
function validate_microservices() {
# tgi for embedding service
validate_services \
"${ip_address}:8008/generate" \
"generated_text" \
"tgi" \
"codetrans-gaudi-tgi-service" \
'{"inputs":"What is Deep Learning?","parameters":{"max_new_tokens":17, "do_sample": true}}'
# llm microservice
validate_services \
"${ip_address}:9000/v1/chat/completions" \
"data: " \
"llm" \
"codetrans-gaudi-llm-server" \
'{"query":" ### System: Please translate the following Golang codes into Python codes. ### Original codes: '\'''\'''\''Golang \npackage main\n\nimport \"fmt\"\nfunc main() {\n fmt.Println(\"Hello, World!\");\n '\'''\'''\'' ### Translated codes:"}'
}
function validate_megaservice() {
# Curl the Mega Service
validate_services \
"${ip_address}:${BACKEND_SERVICE_PORT}/v1/codetrans" \
"print" \
"mega-codetrans" \
"codetrans-gaudi-backend-server" \
'{"language_from": "Golang","language_to": "Python","source_code": "package main\n\nimport \"fmt\"\nfunc main() {\n fmt.Println(\"Hello, World!\");\n}"}'
# test the megeservice via nginx
validate_services \
"${ip_address}:${NGINX_PORT}/v1/codetrans" \
"print" \
"mega-codetrans-nginx" \
"codetrans-gaudi-nginx-server" \
'{"language_from": "Golang","language_to": "Python","source_code": "package main\n\nimport \"fmt\"\nfunc main() {\n fmt.Println(\"Hello, World!\");\n}"}'
}
function validate_frontend() {
cd $WORKPATH/ui/svelte
local conda_env_name="OPEA_e2e"
export PATH=${HOME}/miniforge3/bin/:$PATH
if conda info --envs | grep -q "$conda_env_name"; then
echo "$conda_env_name exist!"
else
conda create -n ${conda_env_name} python=3.12 -y
fi
source activate ${conda_env_name}
sed -i "s/localhost/$ip_address/g" playwright.config.ts
conda install -c conda-forge nodejs=22.6.0 -y
npm install && npm ci && npx playwright install --with-deps
node -v && npm -v && pip list
exit_status=0
npx playwright test || exit_status=$?
if [ $exit_status -ne 0 ]; then
echo "[TEST INFO]: ---------frontend test failed---------"
exit $exit_status
else
echo "[TEST INFO]: ---------frontend test passed---------"
fi
}
function stop_docker() {
cd $WORKPATH/docker_compose/intel/hpu/gaudi/
docker compose -f compose_tgi.yaml stop && docker compose rm -f
}
function main() {
stop_docker
if [[ "$IMAGE_REPO" == "opea" ]]; then build_docker_images; fi
start_services
validate_microservices
validate_megaservice
validate_frontend
stop_docker
echo y | docker system prune
}
main

View File

@@ -0,0 +1,194 @@
#!/bin/bash
# Copyright (C) 2024 Intel Corporation
# SPDX-License-Identifier: Apache-2.0
set -xe
IMAGE_REPO=${IMAGE_REPO:-"opea"}
IMAGE_TAG=${IMAGE_TAG:-"latest"}
echo "REGISTRY=IMAGE_REPO=${IMAGE_REPO}"
echo "TAG=IMAGE_TAG=${IMAGE_TAG}"
export REGISTRY=${IMAGE_REPO}
export TAG=${IMAGE_TAG}
export MODEL_CACHE=${model_cache:-"./data"}
WORKPATH=$(dirname "$PWD")
LOG_PATH="$WORKPATH/tests"
ip_address=$(hostname -I | awk '{print $1}')
function build_docker_images() {
opea_branch=${opea_branch:-"main"}
# If the opea_branch isn't main, replace the git clone branch in Dockerfile.
if [[ "${opea_branch}" != "main" ]]; then
cd $WORKPATH
OLD_STRING="RUN git clone --depth 1 https://github.com/opea-project/GenAIComps.git"
NEW_STRING="RUN git clone --depth 1 --branch ${opea_branch} https://github.com/opea-project/GenAIComps.git"
find . -type f -name "Dockerfile*" | while read -r file; do
echo "Processing file: $file"
sed -i "s|$OLD_STRING|$NEW_STRING|g" "$file"
done
fi
cd $WORKPATH/docker_image_build
git clone --depth 1 --branch ${opea_branch} https://github.com/opea-project/GenAIComps.git
echo "Build all the images with --no-cache, check docker_image_build.log for details..."
service_list="codetrans codetrans-ui llm-textgen nginx"
docker compose -f build.yaml build ${service_list} --no-cache > ${LOG_PATH}/docker_image_build.log
docker pull ghcr.io/huggingface/text-generation-inference:2.4.0-intel-cpu
docker images && sleep 1s
}
function start_services() {
cd $WORKPATH/docker_compose/intel/cpu/xeon/
export http_proxy=${http_proxy}
export https_proxy=${http_proxy}
export LLM_MODEL_ID="mistralai/Mistral-7B-Instruct-v0.3"
export LLM_ENDPOINT="http://${ip_address}:8008"
export LLM_COMPONENT_NAME="OpeaTextGenService"
export HUGGINGFACEHUB_API_TOKEN=${HUGGINGFACEHUB_API_TOKEN}
export MEGA_SERVICE_HOST_IP=${ip_address}
export LLM_SERVICE_HOST_IP=${ip_address}
export BACKEND_SERVICE_ENDPOINT="http://${ip_address}:7777/v1/codetrans"
export FRONTEND_SERVICE_IP=${ip_address}
export FRONTEND_SERVICE_PORT=5173
export BACKEND_SERVICE_NAME=codetrans
export BACKEND_SERVICE_IP=${ip_address}
export BACKEND_SERVICE_PORT=7777
export NGINX_PORT=80
export host_ip=${ip_address}
sed -i "s/backend_address/$ip_address/g" $WORKPATH/ui/svelte/.env
# Start Docker Containers
docker compose -f compose_tgi.yaml up -d > ${LOG_PATH}/start_services_with_compose.log
n=0
until [[ "$n" -ge 100 ]]; do
docker logs codetrans-xeon-tgi-service > ${LOG_PATH}/tgi_service_start.log
if grep -q Connected ${LOG_PATH}/tgi_service_start.log; then
break
fi
sleep 5s
n=$((n+1))
done
sleep 1m
}
function validate_services() {
local URL="$1"
local EXPECTED_RESULT="$2"
local SERVICE_NAME="$3"
local DOCKER_NAME="$4"
local INPUT_DATA="$5"
local HTTP_STATUS=$(curl -s -o /dev/null -w "%{http_code}" -X POST -d "$INPUT_DATA" -H 'Content-Type: application/json' "$URL")
if [ "$HTTP_STATUS" -eq 200 ]; then
echo "[ $SERVICE_NAME ] HTTP status is 200. Checking content..."
local CONTENT=$(curl -s -X POST -d "$INPUT_DATA" -H 'Content-Type: application/json' "$URL" | tee ${LOG_PATH}/${SERVICE_NAME}.log)
if echo "$CONTENT" | grep -q "$EXPECTED_RESULT"; then
echo "[ $SERVICE_NAME ] Content is as expected."
else
echo "[ $SERVICE_NAME ] Content does not match the expected result: $CONTENT"
docker logs ${DOCKER_NAME} >> ${LOG_PATH}/${SERVICE_NAME}.log
exit 1
fi
else
echo "[ $SERVICE_NAME ] HTTP status is not 200. Received status was $HTTP_STATUS"
docker logs ${DOCKER_NAME} >> ${LOG_PATH}/${SERVICE_NAME}.log
exit 1
fi
sleep 5s
}
function validate_microservices() {
# tgi for embedding service
validate_services \
"${ip_address}:8008/generate" \
"generated_text" \
"tgi" \
"codetrans-xeon-tgi-service" \
'{"inputs":"What is Deep Learning?","parameters":{"max_new_tokens":17, "do_sample": true}}'
# llm microservice
validate_services \
"${ip_address}:9000/v1/chat/completions" \
"data: " \
"llm" \
"codetrans-xeon-llm-server" \
'{"query":" ### System: Please translate the following Golang codes into Python codes. ### Original codes: '\'''\'''\''Golang \npackage main\n\nimport \"fmt\"\nfunc main() {\n fmt.Println(\"Hello, World!\");\n '\'''\'''\'' ### Translated codes:"}'
}
function validate_megaservice() {
# Curl the Mega Service
validate_services \
"${ip_address}:${BACKEND_SERVICE_PORT}/v1/codetrans" \
"print" \
"mega-codetrans" \
"codetrans-xeon-backend-server" \
'{"language_from": "Golang","language_to": "Python","source_code": "package main\n\nimport \"fmt\"\nfunc main() {\n fmt.Println(\"Hello, World!\");\n}"}'
# test the megeservice via nginx
validate_services \
"${ip_address}:${NGINX_PORT}/v1/codetrans" \
"print" \
"mega-codetrans-nginx" \
"codetrans-xeon-nginx-server" \
'{"language_from": "Golang","language_to": "Python","source_code": "package main\n\nimport \"fmt\"\nfunc main() {\n fmt.Println(\"Hello, World!\");\n}"}'
}
function validate_frontend() {
cd $WORKPATH/ui/svelte
local conda_env_name="OPEA_e2e"
export PATH=${HOME}/miniforge3/bin/:$PATH
if conda info --envs | grep -q "$conda_env_name"; then
echo "$conda_env_name exist!"
else
conda create -n ${conda_env_name} python=3.12 -y
fi
source activate ${conda_env_name}
sed -i "s/localhost/$ip_address/g" playwright.config.ts
conda install -c conda-forge nodejs=22.6.0 -y
npm install && npm ci && npx playwright install --with-deps
node -v && npm -v && pip list
exit_status=0
npx playwright test || exit_status=$?
if [ $exit_status -ne 0 ]; then
echo "[TEST INFO]: ---------frontend test failed---------"
exit $exit_status
else
echo "[TEST INFO]: ---------frontend test passed---------"
fi
}
function stop_docker() {
cd $WORKPATH/docker_compose/intel/cpu/xeon/
docker compose -f compose_tgi.yaml stop && docker compose rm -f
}
function main() {
stop_docker
if [[ "$IMAGE_REPO" == "opea" ]]; then build_docker_images; fi
start_services
validate_microservices
validate_megaservice
validate_frontend
stop_docker
echo y | docker system prune
}
main