CodGen Examples using-RAG-and-Agents (#1757)
Signed-off-by: Mustafa <mustafa.cetin@intel.com>
This commit is contained in:
65
CodeGen/ui/gradio/README.md
Normal file
65
CodeGen/ui/gradio/README.md
Normal file
@@ -0,0 +1,65 @@
|
||||
# Document Summary
|
||||
|
||||
This project provides a user interface for summarizing documents and text using a Dockerized frontend application. Users can upload files or paste text to generate summaries.
|
||||
|
||||
## Docker
|
||||
|
||||
### Build UI Docker Image
|
||||
|
||||
To build the frontend Docker image, navigate to the `GenAIExamples/CodeGen/ui` directory and run the following command:
|
||||
|
||||
```bash
|
||||
cd GenAIExamples/CodeGen/ui
|
||||
docker build -t opea/codegen-gradio-ui:latest --build-arg https_proxy=$https_proxy --build-arg http_proxy=$http_proxy -f docker/Dockerfile.gradio .
|
||||
```
|
||||
|
||||
This command builds the Docker image with the tag `opea/codegen-gradio-ui:latest`. It also passes the proxy settings as build arguments to ensure that the build process can access the internet if you are behind a corporate firewall.
|
||||
|
||||
### Run UI Docker Image
|
||||
|
||||
To run the frontend Docker image, navigate to the `GenAIExamples/CodeGen/ui/gradio` directory and execute the following commands:
|
||||
|
||||
```bash
|
||||
cd GenAIExamples/CodeGen/ui/gradio
|
||||
|
||||
ip_address=$(hostname -I | awk '{print $1}')
|
||||
docker run -d -p 5173:5173 --ipc=host \
|
||||
-e http_proxy=$http_proxy \
|
||||
-e https_proxy=$https_proxy \
|
||||
-e no_proxy=$no_proxy \
|
||||
-e BACKEND_SERVICE_ENDPOINT=http://$ip_address:7778/v1/codegen \
|
||||
opea/codegen-gradio-ui:latest
|
||||
```
|
||||
|
||||
This command runs the Docker container in interactive mode, mapping port 5173 of the host to port 5173 of the container. It also sets several environment variables, including the backend service endpoint, which is required for the frontend to communicate with the backend service.
|
||||
|
||||
### Python
|
||||
|
||||
To run the frontend application directly using Python, navigate to the `GenAIExamples/CodeGen/ui/gradio` directory and run the following command:
|
||||
|
||||
```bash
|
||||
cd GenAIExamples/CodeGen/ui/gradio
|
||||
python codegen_ui_gradio.py
|
||||
```
|
||||
|
||||
This command starts the frontend application using Python.
|
||||
|
||||
## Additional Information
|
||||
|
||||
### Prerequisites
|
||||
|
||||
Ensure you have Docker installed and running on your system. Also, make sure you have the necessary proxy settings configured if you are behind a corporate firewall.
|
||||
|
||||
### Environment Variables
|
||||
|
||||
- `http_proxy`: Proxy setting for HTTP connections.
|
||||
- `https_proxy`: Proxy setting for HTTPS connections.
|
||||
- `no_proxy`: Comma-separated list of hosts that should be excluded from proxying.
|
||||
- `BACKEND_SERVICE_ENDPOINT`: The endpoint of the backend service that the frontend will communicate with.
|
||||
|
||||
### Troubleshooting
|
||||
|
||||
- Docker Build Issues: If you encounter issues while building the Docker image, ensure that your proxy settings are correctly configured and that you have internet access.
|
||||
- Docker Run Issues: If the Docker container fails to start, check the environment variables and ensure that the backend service is running and accessible.
|
||||
|
||||
This README file provides detailed instructions and explanations for building and running the Dockerized frontend application, as well as running it directly using Python. It also highlights the key features of the project and provides additional information for troubleshooting and configuring the environment.
|
||||
371
CodeGen/ui/gradio/codegen_ui_gradio.py
Normal file
371
CodeGen/ui/gradio/codegen_ui_gradio.py
Normal file
@@ -0,0 +1,371 @@
|
||||
# Copyright (C) 2025 Intel Corporation
|
||||
# SPDX-License-Identifier: Apache-2.0
|
||||
|
||||
# This is a Gradio app that includes two tabs: one for code generation and another for resource management.
|
||||
# The resource management tab has been updated to allow file uploads, deletion, and a table listing all the files.
|
||||
# Additionally, three small text boxes have been added for managing file dataframe parameters.
|
||||
|
||||
import argparse
|
||||
import json
|
||||
import os
|
||||
from pathlib import Path
|
||||
from urllib.parse import urlparse
|
||||
|
||||
import gradio as gr
|
||||
import pandas as pd
|
||||
import requests
|
||||
import uvicorn
|
||||
from fastapi import FastAPI
|
||||
from fastapi.staticfiles import StaticFiles
|
||||
|
||||
logflag = os.getenv("LOGFLAG", False)
|
||||
|
||||
# create a FastAPI app
|
||||
app = FastAPI()
|
||||
cur_dir = os.getcwd()
|
||||
static_dir = Path(os.path.join(cur_dir, "static/"))
|
||||
tmp_dir = Path(os.path.join(cur_dir, "split_tmp_videos/"))
|
||||
|
||||
Path(static_dir).mkdir(parents=True, exist_ok=True)
|
||||
app.mount("/static", StaticFiles(directory=static_dir), name="static")
|
||||
|
||||
tmp_upload_folder = "/tmp/gradio/"
|
||||
|
||||
|
||||
host_ip = os.getenv("host_ip")
|
||||
DATAPREP_REDIS_PORT = os.getenv("DATAPREP_REDIS_PORT", 6007)
|
||||
DATAPREP_ENDPOINT = os.getenv("DATAPREP_ENDPOINT", f"http://{host_ip}:{DATAPREP_REDIS_PORT}/v1/dataprep")
|
||||
MEGA_SERVICE_PORT = os.getenv("MEGA_SERVICE_PORT", 7778)
|
||||
|
||||
backend_service_endpoint = os.getenv("BACKEND_SERVICE_ENDPOINT", f"http://{host_ip}:{MEGA_SERVICE_PORT}/v1/codegen")
|
||||
|
||||
dataprep_ingest_endpoint = f"{DATAPREP_ENDPOINT}/ingest"
|
||||
dataprep_get_files_endpoint = f"{DATAPREP_ENDPOINT}/get"
|
||||
dataprep_delete_files_endpoint = f"{DATAPREP_ENDPOINT}/delete"
|
||||
dataprep_get_indices_endpoint = f"{DATAPREP_ENDPOINT}/indices"
|
||||
|
||||
|
||||
# Define the functions that will be used in the app
|
||||
def conversation_history(prompt, index, use_agent, history):
|
||||
print(f"Generating code for prompt: {prompt} using index: {index} and use_agent is {use_agent}")
|
||||
history.append([prompt, ""])
|
||||
response_generator = generate_code(prompt, index, use_agent)
|
||||
for token in response_generator:
|
||||
history[-1][-1] += token
|
||||
yield history
|
||||
|
||||
|
||||
def upload_media(media, index=None, chunk_size=1500, chunk_overlap=100):
|
||||
media = media.strip().split("\n")
|
||||
if not chunk_size:
|
||||
chunk_size = 1500
|
||||
if not chunk_overlap:
|
||||
chunk_overlap = 100
|
||||
|
||||
requests = []
|
||||
if type(media) is list:
|
||||
for file in media:
|
||||
file_ext = os.path.splitext(file)[-1]
|
||||
if is_valid_url(file):
|
||||
yield (
|
||||
gr.Textbox(
|
||||
visible=True,
|
||||
value="Ingesting URL...",
|
||||
)
|
||||
)
|
||||
value = ingest_url(file, index, chunk_size, chunk_overlap)
|
||||
requests.append(value)
|
||||
yield value
|
||||
elif file_ext in [".pdf", ".txt"]:
|
||||
yield (
|
||||
gr.Textbox(
|
||||
visible=True,
|
||||
value="Ingesting file...",
|
||||
)
|
||||
)
|
||||
value = ingest_file(file, index, chunk_size, chunk_overlap)
|
||||
requests.append(value)
|
||||
yield value
|
||||
else:
|
||||
yield (
|
||||
gr.Textbox(
|
||||
visible=True,
|
||||
value="Your media is either an invalid URL or the file extension type is not supported. (Supports .pdf, .txt, url)",
|
||||
)
|
||||
)
|
||||
return
|
||||
yield requests
|
||||
|
||||
else:
|
||||
file_ext = os.path.splitext(media)[-1]
|
||||
if is_valid_url(media):
|
||||
value = ingest_url(media, index, chunk_size, chunk_overlap)
|
||||
yield value
|
||||
elif file_ext in [".pdf", ".txt"]:
|
||||
value = ingest_file(media, index, chunk_size, chunk_overlap)
|
||||
yield value
|
||||
else:
|
||||
yield (
|
||||
gr.Textbox(
|
||||
visible=True,
|
||||
value="Your file extension type is not supported.",
|
||||
)
|
||||
)
|
||||
return
|
||||
|
||||
|
||||
def generate_code(query, index=None, use_agent=False):
|
||||
if index is None or index == "None":
|
||||
input_dict = {"messages": query, "agents_flag": use_agent}
|
||||
else:
|
||||
input_dict = {"messages": query, "index_name": index, "agents_flag": use_agent}
|
||||
|
||||
print("Query is ", input_dict)
|
||||
headers = {"Content-Type": "application/json"}
|
||||
|
||||
response = requests.post(url=backend_service_endpoint, headers=headers, data=json.dumps(input_dict), stream=True)
|
||||
|
||||
line_count = 0
|
||||
for line in response.iter_lines():
|
||||
line_count += 1
|
||||
if line:
|
||||
line = line.decode("utf-8")
|
||||
if line.startswith("data: "): # Only process lines starting with "data: "
|
||||
json_part = line[len("data: ") :] # Remove the "data: " prefix
|
||||
else:
|
||||
json_part = line
|
||||
if json_part.strip() == "[DONE]": # Ignore the DONE marker
|
||||
continue
|
||||
try:
|
||||
json_obj = json.loads(json_part) # Convert to dictionary
|
||||
if "choices" in json_obj:
|
||||
for choice in json_obj["choices"]:
|
||||
if "text" in choice:
|
||||
# Yield each token individually
|
||||
yield choice["text"]
|
||||
except json.JSONDecodeError:
|
||||
print("Error parsing JSON:", json_part)
|
||||
|
||||
if line_count == 0:
|
||||
yield "Something went wrong, No Response Generated! \nIf you are using an Index, try uploading your media again with a smaller chunk size to avoid exceeding the token max. \
|
||||
\nOr, check the Use Agent box and try again."
|
||||
|
||||
|
||||
def ingest_file(file, index=None, chunk_size=100, chunk_overlap=150):
|
||||
headers = {
|
||||
# "Content-Type: multipart/form-data"
|
||||
}
|
||||
file_input = {"files": open(file, "rb")}
|
||||
|
||||
if index:
|
||||
print("Index is", index)
|
||||
data = {"index_name": index, "chunk_size": chunk_size, "chunk_overlap": chunk_overlap}
|
||||
else:
|
||||
data = {"chunk_size": chunk_size, "chunk_overlap": chunk_overlap}
|
||||
|
||||
response = requests.post(url=dataprep_ingest_endpoint, headers=headers, files=file_input, data=data)
|
||||
|
||||
return response.text
|
||||
|
||||
|
||||
def ingest_url(url, index=None, chunk_size=100, chunk_overlap=150):
|
||||
url = str(url)
|
||||
if not is_valid_url(url):
|
||||
return "Invalid URL entered. Please enter a valid URL"
|
||||
|
||||
headers = {
|
||||
# "Content-Type: multipart/form-data"
|
||||
}
|
||||
|
||||
if index:
|
||||
url_input = {
|
||||
"link_list": json.dumps([url]),
|
||||
"index_name": index,
|
||||
"chunk_size": chunk_size,
|
||||
"chunk_overlap": chunk_overlap,
|
||||
}
|
||||
else:
|
||||
url_input = {"link_list": json.dumps([url]), "chunk_size": chunk_size, "chunk_overlap": chunk_overlap}
|
||||
response = requests.post(url=dataprep_ingest_endpoint, headers=headers, data=url_input)
|
||||
|
||||
return response.text
|
||||
|
||||
|
||||
def is_valid_url(url):
|
||||
url = str(url)
|
||||
try:
|
||||
result = urlparse(url)
|
||||
return all([result.scheme, result.netloc])
|
||||
except ValueError:
|
||||
return False
|
||||
|
||||
|
||||
def get_files(index=None):
|
||||
headers = {
|
||||
# "Content-Type: multipart/form-data"
|
||||
}
|
||||
if index == "All Files":
|
||||
index = None
|
||||
|
||||
if index:
|
||||
index = {"index_name": index}
|
||||
response = requests.post(url=dataprep_get_files_endpoint, headers=headers, data=index)
|
||||
table = response.json()
|
||||
return table
|
||||
else:
|
||||
response = requests.post(url=dataprep_get_files_endpoint, headers=headers)
|
||||
table = response.json()
|
||||
return table
|
||||
|
||||
|
||||
def update_table(index=None):
|
||||
if index == "All Files":
|
||||
index = None
|
||||
files = get_files(index)
|
||||
if len(files) == 0:
|
||||
df = pd.DataFrame(files, columns=["Files"])
|
||||
return df
|
||||
else:
|
||||
df = pd.DataFrame(files)
|
||||
return df
|
||||
|
||||
|
||||
def update_indices():
|
||||
indices = get_indices()
|
||||
df = pd.DataFrame(indices, columns=["File Indices"])
|
||||
return df
|
||||
|
||||
|
||||
def delete_file(file, index=None):
|
||||
# Remove the selected file from the file list
|
||||
headers = {
|
||||
# "Content-Type: application/json"
|
||||
}
|
||||
if index:
|
||||
file_input = {"files": open(file, "rb"), "index_name": index}
|
||||
else:
|
||||
file_input = {"files": open(file, "rb")}
|
||||
response = requests.post(url=dataprep_delete_files_endpoint, headers=headers, data=file_input)
|
||||
table = update_table()
|
||||
return response.text
|
||||
|
||||
|
||||
def delete_all_files(index=None):
|
||||
# Remove all files from the file list
|
||||
headers = {
|
||||
# "Content-Type: application/json"
|
||||
}
|
||||
response = requests.post(url=dataprep_delete_files_endpoint, headers=headers, data='{"file_path": "all"}')
|
||||
table = update_table()
|
||||
|
||||
return "Delete All status: " + response.text
|
||||
|
||||
|
||||
def get_indices():
|
||||
headers = {
|
||||
# "Content-Type: application/json"
|
||||
}
|
||||
response = requests.post(url=dataprep_get_indices_endpoint, headers=headers)
|
||||
indices = ["None"]
|
||||
indices += response.json()
|
||||
return indices
|
||||
|
||||
|
||||
def update_indices_dropdown():
|
||||
new_dd = gr.update(choices=get_indices(), value="None")
|
||||
return new_dd
|
||||
|
||||
|
||||
def get_file_names(files):
|
||||
file_str = ""
|
||||
if not files:
|
||||
return file_str
|
||||
|
||||
for file in files:
|
||||
file_str += file + "\n"
|
||||
file_str.strip()
|
||||
return file_str
|
||||
|
||||
|
||||
# Define UI components
|
||||
with gr.Blocks() as ui:
|
||||
with gr.Tab("Code Generation"):
|
||||
gr.Markdown("### Generate Code from Natural Language")
|
||||
chatbot = gr.Chatbot(label="Chat History")
|
||||
prompt_input = gr.Textbox(label="Enter your query")
|
||||
with gr.Column():
|
||||
with gr.Row(equal_height=True):
|
||||
database_dropdown = gr.Dropdown(choices=get_indices(), label="Select Index", value="None", scale=10)
|
||||
db_refresh_button = gr.Button("Refresh Dropdown", scale=0.1)
|
||||
db_refresh_button.click(update_indices_dropdown, outputs=database_dropdown)
|
||||
use_agent = gr.Checkbox(label="Use Agent", container=False)
|
||||
|
||||
generate_button = gr.Button("Generate Code")
|
||||
generate_button.click(
|
||||
conversation_history, inputs=[prompt_input, database_dropdown, use_agent, chatbot], outputs=chatbot
|
||||
)
|
||||
|
||||
with gr.Tab("Resource Management"):
|
||||
# File management components
|
||||
with gr.Row():
|
||||
with gr.Column(scale=1):
|
||||
index_name_input = gr.Textbox(label="Index Name")
|
||||
chunk_size_input = gr.Textbox(
|
||||
label="Chunk Size", value="1500", placeholder="Enter an integer (default: 1500)"
|
||||
)
|
||||
chunk_overlap_input = gr.Textbox(
|
||||
label="Chunk Overlap", value="100", placeholder="Enter an integer (default: 100)"
|
||||
)
|
||||
with gr.Column(scale=3):
|
||||
file_upload = gr.File(label="Upload Files", file_count="multiple")
|
||||
url_input = gr.Textbox(label="Media to be ingested (Append URL's in a new line)")
|
||||
upload_button = gr.Button("Upload", variant="primary")
|
||||
upload_status = gr.Textbox(label="Upload Status")
|
||||
file_upload.change(get_file_names, inputs=file_upload, outputs=url_input)
|
||||
with gr.Column(scale=1):
|
||||
file_table = gr.Dataframe(interactive=False, value=update_indices())
|
||||
refresh_button = gr.Button("Refresh", variant="primary", size="sm")
|
||||
refresh_button.click(update_indices, outputs=file_table)
|
||||
upload_button.click(
|
||||
upload_media,
|
||||
inputs=[url_input, index_name_input, chunk_size_input, chunk_overlap_input],
|
||||
outputs=upload_status,
|
||||
)
|
||||
|
||||
delete_all_button = gr.Button("Delete All", variant="primary", size="sm")
|
||||
delete_all_button.click(delete_all_files, outputs=upload_status)
|
||||
|
||||
|
||||
@app.get("/health")
|
||||
def health_check():
|
||||
return {"status": "ok"}
|
||||
|
||||
|
||||
ui.queue()
|
||||
app = gr.mount_gradio_app(app, ui, path="/")
|
||||
share = False
|
||||
enable_queue = True
|
||||
|
||||
if __name__ == "__main__":
|
||||
parser = argparse.ArgumentParser()
|
||||
parser.add_argument("--host", type=str, default="0.0.0.0")
|
||||
parser.add_argument("--port", type=int, default=os.getenv("UI_PORT", 5173))
|
||||
parser.add_argument("--concurrency-count", type=int, default=20)
|
||||
parser.add_argument("--share", action="store_true")
|
||||
|
||||
host_ip = os.getenv("host_ip")
|
||||
DATAPREP_REDIS_PORT = os.getenv("DATAPREP_REDIS_PORT", 6007)
|
||||
DATAPREP_ENDPOINT = os.getenv("DATAPREP_ENDPOINT", f"http://{host_ip}:{DATAPREP_REDIS_PORT}/v1/dataprep")
|
||||
MEGA_SERVICE_PORT = os.getenv("MEGA_SERVICE_PORT", 7778)
|
||||
|
||||
backend_service_endpoint = os.getenv("BACKEND_SERVICE_ENDPOINT", f"http://{host_ip}:{MEGA_SERVICE_PORT}/v1/codegen")
|
||||
|
||||
args = parser.parse_args()
|
||||
global gateway_addr
|
||||
gateway_addr = backend_service_endpoint
|
||||
global dataprep_ingest_addr
|
||||
dataprep_ingest_addr = dataprep_ingest_endpoint
|
||||
global dataprep_get_files_addr
|
||||
dataprep_get_files_addr = dataprep_get_files_endpoint
|
||||
|
||||
uvicorn.run(app, host=args.host, port=args.port)
|
||||
4
CodeGen/ui/gradio/requirements.txt
Normal file
4
CodeGen/ui/gradio/requirements.txt
Normal file
@@ -0,0 +1,4 @@
|
||||
gradio==5.22.0
|
||||
numpy==1.26.4
|
||||
opencv-python==4.10.0.82
|
||||
Pillow==10.3.0
|
||||
Reference in New Issue
Block a user