Added compose example for VisualQnA deployment on AMD ROCm systems (#1201)

Signed-off-by: artem-astafev <a.astafev@datamonsters.com>
Signed-off-by: Artem Astafev <a.astafev@datamonsters.com>
Co-authored-by: pre-commit-ci[bot] <66853113+pre-commit-ci[bot]@users.noreply.github.com>
This commit is contained in:
Artem Astafev
2024-12-07 17:58:40 +07:00
committed by GitHub
parent 07e47a1f38
commit 77e640e2f3
4 changed files with 489 additions and 0 deletions

View File

@@ -0,0 +1,156 @@
# Build Mega Service of VisualQnA on AMD ROCm
This document outlines the deployment process for a VisualQnA application utilizing the [GenAIComps](https://github.com/opea-project/GenAIComps.git) microservice pipeline on Intel Xeon server. The steps include Docker image creation, container deployment via Docker Compose, and service execution to integrate microservices such as `llm`. We will publish the Docker images to Docker Hub soon, it will simplify the deployment process for this service.
## 🚀 Build Docker Images
First of all, you need to build Docker Images locally and install the python package of it.
### 1. Build LVM and NGINX Docker Images
```bash
git clone https://github.com/opea-project/GenAIComps.git
cd GenAIComps
docker build --no-cache -t opea/lvm-tgi:latest --build-arg https_proxy=$https_proxy --build-arg http_proxy=$http_proxy -f comps/lvms/tgi-llava/Dockerfile .
docker build --no-cache -t opea/nginx:latest --build-arg https_proxy=$https_proxy --build-arg http_proxy=$http_proxy -f comps/nginx/Dockerfile .
```
### 2. Build MegaService Docker Image
To construct the Mega Service, we utilize the [GenAIComps](https://github.com/opea-project/GenAIComps.git) microservice pipeline within the `visualqna.py` Python script. Build MegaService Docker image via below command:
```bash
git clone https://github.com/opea-project/GenAIExamples.git
cd GenAIExamples/VisualQnA
docker build --no-cache -t opea/visualqna:latest --build-arg https_proxy=$https_proxy --build-arg http_proxy=$http_proxy -f Dockerfile .
```
### 3. Build UI Docker Image
Build frontend Docker image via below command:
```bash
cd GenAIExamples/VisualQnA/ui
docker build --no-cache -t opea/visualqna-ui:latest --build-arg https_proxy=$https_proxy --build-arg http_proxy=$http_proxy -f docker/Dockerfile .
```
### 4. Pull TGI AMD ROCm Image
```bash
docker pull ghcr.io/huggingface/text-generation-inference:2.4.1-rocm
```
Then run the command `docker images`, you will have the following 5 Docker Images:
1. `ghcr.io/huggingface/text-generation-inference:2.4.1-rocm`
2. `opea/lvm-tgi:latest`
3. `opea/visualqna:latest`
4. `opea/visualqna-ui:latest`
5. `opea/nginx`
## 🚀 Start Microservices
### Setup Environment Variables
Since the `compose.yaml` will consume some environment variables, you need to setup them in advance as below.
**Export the value of the public IP address of your ROCM server to the `host_ip` environment variable**
> Change the External_Public_IP below with the actual IPV4 value
```
export host_ip="External_Public_IP"
```
**Append the value of the public IP address to the no_proxy list**
```
export your_no_proxy="${your_no_proxy},${host_ip}"
```
```bash
export HOST_IP=${your_host_ip}
export VISUALQNA_TGI_SERVICE_PORT="8399"
export VISUALQNA_HUGGINGFACEHUB_API_TOKEN={your_hugginface_api_token}
export VISUALQNA_CARD_ID="card1"
export VISUALQNA_RENDER_ID="renderD136"
export LVM_MODEL_ID="Xkev/Llama-3.2V-11B-cot"
export MODEL="llava-hf/llava-v1.6-mistral-7b-hf"
export LVM_ENDPOINT="http://${HOST_IP}:8399"
export LVM_SERVICE_PORT=9399
export MEGA_SERVICE_HOST_IP=${HOST_IP}
export LVM_SERVICE_HOST_IP=${HOST_IP}
export BACKEND_SERVICE_ENDPOINT="http://${HOST_IP}:18003/v1/visualqna"
export FRONTEND_SERVICE_IP=${HOST_IP}
export FRONTEND_SERVICE_PORT=18001
export BACKEND_SERVICE_NAME=visualqna
export BACKEND_SERVICE_IP=${HOST_IP}
export BACKEND_SERVICE_PORT=18002
export NGINX_PORT=18003
```
Note: Please replace with `host_ip` with you external IP address, do not use localhost.
Note: You can use set_env.sh file with bash command (. setset_env.sh) to set up needed variables.
### Start all the services Docker Containers
> Before running the docker compose command, you need to be in the folder that has the docker compose yaml file
```bash
cd GenAIExamples/VisualQnA/docker_compose/amd/gpu/rocm
```
```bash
docker compose -f compose.yaml up -d
```
### Validate Microservices
Follow the instructions to validate MicroServices.
> Note: If you see an "Internal Server Error" from the `curl` command, wait a few minutes for the microserver to be ready and then try again.
1. LLM Microservice
```bash
http_proxy="" curl http://${host_ip}:9399/v1/lvm -XPOST -d '{"image": "iVBORw0KGgoAAAANSUhEUgAAAAoAAAAKCAYAAACNMs+9AAAAFUlEQVR42mP8/5+hnoEIwDiqkL4KAcT9GO0U4BxoAAAAAElFTkSuQmCC", "prompt":"What is this?"}' -H 'Content-Type: application/json'
```
2. MegaService
```bash
curl http://${host_ip}:8888/v1/visualqna -H "Content-Type: application/json" -d '{
"messages": [
{
"role": "user",
"content": [
{
"type": "text",
"text": "What'\''s in this image?"
},
{
"type": "image_url",
"image_url": {
"url": "https://www.ilankelman.org/stopsigns/australia.jpg"
}
}
]
}
],
"max_tokens": 300
}'
```
## 🚀 Launch the UI
To access the frontend, open the following URL in your browser: http://{host_ip}:5173. By default, the UI runs on port 5173 internally. If you prefer to use a different host port to access the frontend, you can modify the port mapping in the `compose.yaml` file as shown below:
```yaml
visualqna-gaudi-ui-server:
image: opea/visualqna-ui:latest
...
ports:
- "80:5173"
```

View File

@@ -0,0 +1,99 @@
# Copyright (C) 2024 Advanced Micro Devices, Inc.
# SPDX-License-Identifier: Apache-2.0
services:
visualqna-llava-tgi-service:
image: ghcr.io/huggingface/text-generation-inference:2.4.1-rocm
container_name: visualqna-tgi-service
ports:
- "${VISUALQNA_TGI_SERVICE_PORT:-8399}:80"
environment:
no_proxy: ${no_proxy}
http_proxy: ${http_proxy}
https_proxy: ${https_proxy}
TGI_LLM_ENDPOINT: "http://${HOST_IP}:${VISUALQNA_TGI_SERVICE_PORT}"
HUGGINGFACEHUB_API_TOKEN: ${VISUALQNA_HUGGINGFACEHUB_API_TOKEN}
HUGGING_FACE_HUB_TOKEN: ${VISUALQNA_HUGGINGFACEHUB_API_TOKEN}
volumes:
- "/var/opea/visualqna-service/data:/data"
shm_size: 64g
devices:
- /dev/kfd:/dev/kfd
- /dev/dri/:/dev/dri/
cap_add:
- SYS_PTRACE
group_add:
- video
security_opt:
- seccomp:unconfined
ipc: host
command: --model-id ${LVM_MODEL_ID} --max-input-length 4096 --max-total-tokens 8192
lvm-tgi:
image: ${REGISTRY:-opea}/lvm-tgi:${TAG:-latest}
container_name: lvm-tgi-server
depends_on:
- visualqna-llava-tgi-service
ports:
- "9399:9399"
ipc: host
environment:
no_proxy: ${no_proxy}
http_proxy: ${http_proxy}
https_proxy: ${https_proxy}
LVM_ENDPOINT: ${LVM_ENDPOINT}
HF_HUB_DISABLE_PROGRESS_BARS: 1
HF_HUB_ENABLE_HF_TRANSFER: 0
restart: unless-stopped
visualqna-rocm-backend-server:
image: ${REGISTRY:-opea}/visualqna:${TAG:-latest}
container_name: visualqna-rocm-backend-server
depends_on:
- visualqna-llava-tgi-service
- lvm-tgi
ports:
- "${BACKEND_SERVICE_PORT:-8888}:8888"
environment:
- no_proxy=${no_proxy}
- https_proxy=${https_proxy}
- http_proxy=${http_proxy}
- MEGA_SERVICE_HOST_IP=${MEGA_SERVICE_HOST_IP}
- LVM_SERVICE_HOST_IP=${LVM_SERVICE_HOST_IP}
ipc: host
restart: always
visualqna-rocm-ui-server:
image: ${REGISTRY:-opea}/visualqna-ui:${TAG:-latest}
container_name: visualqna-rocm-ui-server
depends_on:
- visualqna-rocm-backend-server
ports:
- "${FRONTEND_SERVICE_PORT:-5173}:5173"
environment:
- no_proxy=${no_proxy}
- https_proxy=${https_proxy}
- http_proxy=${http_proxy}
- BACKEND_BASE_URL=${BACKEND_SERVICE_ENDPOINT}
ipc: host
restart: always
visualqna-nginx-server:
image: ${REGISTRY:-opea}/nginx:${TAG:-latest}
container_name: visualqna-rocm-nginx-server
depends_on:
- visualqna-rocm-backend-server
- visualqna-rocm-ui-server
ports:
- "${NGINX_PORT:-80}:80"
environment:
- no_proxy=${no_proxy}
- https_proxy=${https_proxy}
- http_proxy=${http_proxy}
- FRONTEND_SERVICE_IP=${HOST_IP}
- FRONTEND_SERVICE_PORT=${FRONTEND_SERVICE_PORT}
- BACKEND_SERVICE_NAME=${BACKEND_SERVICE_NAME}
- BACKEND_SERVICE_IP=${HOST_IP}
- BACKEND_SERVICE_PORT=${BACKEND_SERVICE_PORT}
ipc: host
restart: always
networks:
default:
driver: bridge

View File

@@ -0,0 +1,22 @@
#!/usr/bin/env bash
# Copyright (C) 2024 Advanced Micro Devices, Inc
# SPDX-License-Identifier: Apache-2.0
export HOST_IP=${Your_host_ip_address}
export VISUALQNA_TGI_SERVICE_PORT="8399"
export VISUALQNA_HUGGINGFACEHUB_API_TOKEN=${Your_HUGGINGFACEHUB_API_TOKEN}
export VISUALQNA_CARD_ID="card1"
export VISUALQNA_RENDER_ID="renderD136"
export LVM_MODEL_ID="Xkev/Llama-3.2V-11B-cot"
export LVM_ENDPOINT="http://${HOST_IP}:8399"
export LVM_SERVICE_PORT=9399
export MEGA_SERVICE_HOST_IP=${HOST_IP}
export LVM_SERVICE_HOST_IP=${HOST_IP}
export BACKEND_SERVICE_ENDPOINT="http://${host_ip}:${BACKEND_SERVICE_PORT}/v1/visualqna"
export FRONTEND_SERVICE_IP=${HOST_IP}
export FRONTEND_SERVICE_PORT=18001
export BACKEND_SERVICE_NAME=visualqna
export BACKEND_SERVICE_IP=${HOST_IP}
export BACKEND_SERVICE_PORT=18002
export NGINX_PORT=18003

View File

@@ -0,0 +1,212 @@
#!/bin/bash
# Copyright (C) 2024 Advanced Micro Devices, Inc.
# SPDX-License-Identifier: Apache-2.0
set -x
IMAGE_REPO=${IMAGE_REPO:-"opea"}
IMAGE_TAG=${IMAGE_TAG:-"latest"}
echo "REGISTRY=IMAGE_REPO=${IMAGE_REPO}"
echo "TAG=IMAGE_TAG=${IMAGE_TAG}"
WORKPATH=$(dirname "$PWD")
LOG_PATH="$WORKPATH/tests"
ip_address=$(hostname -I | awk '{print $1}')
export REGISTRY=${IMAGE_REPO}
export TAG=${IMAGE_TAG}
export HOST_IP=${ip_address}
export VISUALQNA_TGI_SERVICE_PORT="8399"
export VISUALQNA_HUGGINGFACEHUB_API_TOKEN=${HUGGINGFACEHUB_API_TOKEN}
export VISUALQNA_CARD_ID="card1"
export VISUALQNA_RENDER_ID="renderD136"
export LVM_MODEL_ID="Xkev/Llama-3.2V-11B-cot"
export MODEL="llava-hf/llava-v1.6-mistral-7b-hf"
export LVM_ENDPOINT="http://${HOST_IP}:8399"
export LVM_SERVICE_PORT=9399
export MEGA_SERVICE_HOST_IP=${HOST_IP}
export LVM_SERVICE_HOST_IP=${HOST_IP}
export BACKEND_SERVICE_ENDPOINT="http://${HOST_IP}:${BACKEND_SERVICE_PORT}/v1/visualqna"
export FRONTEND_SERVICE_IP=${HOST_IP}
export FRONTEND_SERVICE_PORT=5173
export BACKEND_SERVICE_NAME=visualqna
export BACKEND_SERVICE_IP=${HOST_IP}
export BACKEND_SERVICE_PORT=8888
export NGINX_PORT=18003
export PATH="~/miniconda3/bin:$PATH"
function build_docker_images() {
cd $WORKPATH/docker_image_build
git clone https://github.com/opea-project/GenAIComps.git && cd GenAIComps && git checkout "${opea_branch:-"main"}" && cd ../
echo "Build all the images with --no-cache, check docker_image_build.log for details..."
docker compose -f build.yaml build --no-cache > ${LOG_PATH}/docker_image_build.log
docker pull ghcr.io/huggingface/text-generation-inference:2.4.1-rocm
docker images && sleep 1s
}
function start_services() {
cd $WORKPATH/docker_compose/amd/gpu/rocm
sed -i "s/backend_address/$ip_address/g" $WORKPATH/ui/svelte/.env
# Start Docker Containers
docker compose up -d > ${LOG_PATH}/start_services_with_compose.log
n=0
until [[ "$n" -ge 100 ]]; do
docker logs visualqna-tgi-service > ${LOG_PATH}/lvm_tgi_service_start.log
if grep -q Connected ${LOG_PATH}/lvm_tgi_service_start.log; then
break
fi
sleep 5s
n=$((n+1))
done
}
function validate_services() {
local URL="$1"
local EXPECTED_RESULT="$2"
local SERVICE_NAME="$3"
local DOCKER_NAME="$4"
local INPUT_DATA="$5"
local HTTP_STATUS=$(curl -s -o /dev/null -w "%{http_code}" -X POST -d "$INPUT_DATA" -H 'Content-Type: application/json' "$URL")
if [ "$HTTP_STATUS" -eq 200 ]; then
echo "[ $SERVICE_NAME ] HTTP status is 200. Checking content..."
local CONTENT=$(curl -s -X POST -d "$INPUT_DATA" -H 'Content-Type: application/json' "$URL" | tee ${LOG_PATH}/${SERVICE_NAME}.log)
if echo "$CONTENT" | grep -q "$EXPECTED_RESULT"; then
echo "[ $SERVICE_NAME ] Content is as expected."
else
echo "[ $SERVICE_NAME ] Content does not match the expected result: $CONTENT"
docker logs ${DOCKER_NAME} >> ${LOG_PATH}/${SERVICE_NAME}.log
exit 1
fi
else
echo "[ $SERVICE_NAME ] HTTP status is not 200. Received status was $HTTP_STATUS"
docker logs ${DOCKER_NAME} >> ${LOG_PATH}/${SERVICE_NAME}.log
exit 1
fi
sleep 1s
}
function validate_microservices() {
# Check if the microservices are running correctly.
# lvm microservice
validate_services \
"${ip_address}:9399/v1/lvm" \
"The image" \
"lvm-tgi" \
"visualqna-tgi-service" \
'{"image": "iVBORw0KGgoAAAANSUhEUgAAAAoAAAAKCAYAAACNMs+9AAAAFUlEQVR42mP8/5+hnoEIwDiqkL4KAcT9GO0U4BxoAAAAAElFTkSuQmCC", "prompt":"What is this?"}'
}
function validate_megaservice() {
# Curl the Mega Service
validate_services \
"${ip_address}:8888/v1/visualqna" \
"The image" \
"visualqna-rocm-backend-server" \
"visualqna-rocm-backend-server" \
'{
"messages": [
{
"role": "user",
"content": [
{
"type": "text",
"text": "What'\''s in this image?"
},
{
"type": "image_url",
"image_url": {
"url": "https://www.ilankelman.org/stopsigns/australia.jpg"
}
}
]
}
],
"max_tokens": 300
}'
# test the megeservice via nginx
validate_services \
"${ip_address}:${NGINX_PORT}/v1/visualqna" \
"The image" \
"visualqna-rocm-nginx-server" \
"visualqna-rocm-nginx-server" \
'{
"messages": [
{
"role": "user",
"content": [
{
"type": "text",
"text": "What'\''s in this image?"
},
{
"type": "image_url",
"image_url": {
"url": "https://www.ilankelman.org/stopsigns/australia.jpg"
}
}
]
}
],
"max_tokens": 300
}'
}
function validate_frontend() {
cd $WORKPATH/ui/svelte
local conda_env_name="OPEA_e2e"
export PATH=${HOME}/miniforge3/bin/:$PATH
if conda info --envs | grep -q "$conda_env_name"; then
echo "$conda_env_name exist!"
else
conda create -n ${conda_env_name} python=3.12 -y
fi
source activate ${conda_env_name}
sed -i "s/localhost/$ip_address/g" playwright.config.ts
conda install -c conda-forge nodejs -y
npm install && npm ci && npx playwright install --with-deps
node -v && npm -v && pip list
exit_status=0
npx playwright test || exit_status=$?
if [ $exit_status -ne 0 ]; then
echo "[TEST INFO]: ---------frontend test failed---------"
exit $exit_status
else
echo "[TEST INFO]: ---------frontend test passed---------"
fi
}
function stop_docker() {
cd $WORKPATH/docker_compose/amd/gpu/rocm/
docker compose stop && docker compose rm -f
}
function main() {
stop_docker
if [[ "$IMAGE_REPO" == "opea" ]]; then build_docker_images; fi
start_services
validate_microservices
validate_megaservice
#validate_frontend
stop_docker
echo y | docker system prune
}
main